
Modeling and Evaluation in a 2N Binary Feature Space:

Structure, Prediction, and Applications

Author: Blake M. Burns∗

May 1, 2025

Abstract

This paper explores modeling the state of a game or real-world system using a finite set of N

binary features. This abstraction naturally defines a state space of size 2N . We detail how a data

structure, typically a lookup table of this size, can store game-theoretic evaluations or statistical

summaries ("statistics") for each unique combination of features. The primary focus is on leveraging

this structure for the prediction and identification of advantageous states or favorable outcomes. We

relate this predictive capability to identifying beneficial situations, a concept we contextually link

to "positive game theory" within this framework. Through mathematical formalization and diverse

examples—including stock market prediction, logic circuits, system configuration, medical diagnosis,

fault analysis, and game subproblems—we illustrate how changes in features ("step choices") affect

the system’s position within the 2N structure and how this structure facilitates evaluation updates

("updating with a step"). The paper emphasizes the utility of simplifying complex systems into a

manageable binary feature space for tractable analysis, prediction, and decision support.

1 Introduction

Game Theory offers a powerful mathematical lens for analyzing strategic interactions [14]. Combinatorial

Game Theory (CGT), a subfield, focuses on two-player, perfect information games without chance, often

characterized by a finite, albeit potentially vast, set of possible states and transitions [1]. Analyzing such

games, or indeed many complex real-world systems, involves grappling with the sheer size of their state

spaces.

The complexity, particularly in games played on grids (like Chess or Go) or systems with numer-

ous interacting components, often exhibits combinatorial explosion. The number of states can grow
∗Dragonex Technologies, https://dragonextech.com, blake.burns@gmail.com. License: Creative Commons Attribution

4.0 International (CC BY 4.0).

1

https://dragonextech.com
mailto:blake.burns@gmail.com


exponentially or factorially with the system’s size (e.g., number of board squares, components, or con-

figuration parameters), rendering exhaustive analysis computationally infeasible [16]. This necessitates

simplification strategies.

One potent simplification strategy involves abstracting the system’s state not by its complete config-

uration but through a limited set of salient features. When these features can be effectively represented

as binary variables (present/absent, true/false, on/off), a structured and finite state space emerges. This

paper investigates systems modeled by N independent binary features, defining a discrete state space of

size 2N .

We demonstrate how a data structure mapping this 2N space can serve as a powerful tool. This

structure stores pre-computed or learned evaluations ("statistics") for each distinct feature combination.

Our central theme is the utility of this 2N structure in predicting favorable outcomes. Within this

paper, we use the term "positive game theory" not in its standard academic sense (which focuses on

explaining observed behaviors), but operationally, to denote the identification of states associated with

desirable outcomes like winning positions, positive expected values, successful operation, or advantageous

configurations. We detail the relationship between binary features, the 2N data structure, "step choices"

(state transitions), and "updating with a step" (evaluation after transition), illustrated with examples

from diverse domains.

2 The 2N Feature Space and Data Structure

Consider a system or game state simplified and characterized by N independent binary features, denoted

f1, f2, . . . , fN . Each feature fi ∈ {0, 1} captures a specific aspect of the state in a binary manner. The

choice of features is crucial and domain-dependent, aiming to capture the most relevant information for

the analysis task.

A specific state in this simplified representation is defined by the feature vector:

f = (f1, f2, . . . , fN )

where each feature value is either 0 or 1.

The set of all possible feature vectors forms the state space of this model. Since each of the N features

can take two values, the total number of unique states is precisely 2N . Each vector f corresponds to one

point in this discrete, N -dimensional space (a hypercube).

We utilize a data structure, denoted S, conceptually a lookup table or an array, indexed by the feature

vectors f . The size of S is 2N . For each state f , there exists a corresponding entry S[f ].

The entry S[f ] stores a "statistic" or evaluation pertinent to the system’s outcome or properties

when it exhibits the features defined by f . The nature of this statistic depends heavily on the application

2



domain, ranging from deterministic outcomes (e.g., logic circuit output) to probabilistic estimates (e.g.,

expected stock return) or game-theoretic values (e.g., win/loss status).

3 Predicting Favorable Outcomes (Contextual "Positive Game

Theory")

As introduced earlier, we use the term "positive game theory" in this paper operationally to mean

the process of identifying states f for which the associated stored statistic S[f ] indicates a favorable or

advantageous outcome according to the goals of the analysis. Examples of favorable outcomes include:

• In deterministic games: A state guaranteed to lead to a win for the player whose turn it is (e.g., a

P-position in CGT [1]).

• In probabilistic/economic contexts: A state associated with a high positive expected value, profit,

or utility [11].

• In system control/engineering: A configuration leading to optimal performance, stability, or absence

of faults.

• In diagnostics: A symptom profile strongly indicating a treatable condition or pointing to a specific,

manageable cause.

The 2N data structure S, once populated (either through calculation, simulation, or learning from

data), acts as an oracle *within the confines of the chosen feature representation*. Determining the

current feature vector f allows for immediate lookup of S[f ], providing a prediction or evaluation of the

current state’s favorability based on the stored statistic. The reliability of this prediction hinges on how

well the N binary features capture the true underlying dynamics relevant to the outcome.

4 Step Choice and Updating

The practical utility of the 2N structure emerges when considering the dynamics of the system or game

over time or through actions:

• Step Choice: An action, event, or passage of time that causes the system to transition from one

state to another. In our model, this means that one or more binary features fi change their value,

leading to a transition from fold to fnew. Strategic decision-making often involves choosing a step

(if possible) that leads to a state fnew with a more favorable statistic S[fnew].

• Updating with a Step: Following a transition to a new state fnew, the evaluation of the situ-

ation is updated by consulting the 2N data structure. This involves calculating the new feature

3



vector fnew and retrieving the corresponding statistic S[fnew]. This provides the assessment for the

situation *after* the step.

The statistics S[f ] within the 2N structure itself might also need updating, particularly in dynamic

or learning systems:

• Pre-computation (Static Systems): For systems with fixed rules (like logic circuits or fully

analyzed game subproblems), the table S can be computed once and remains static. This involves

determining the outcome for each of the 2N feature combinations.

• Learning/Adaptation (Dynamic/Statistical Systems): In domains like finance or diagnos-

tics based on evolving data, the statistics S[f ] may represent averages, probabilities, or expected

values learned from historical observations. As new data becomes available, the values in the table

can be recalibrated or updated (e.g., using techniques related to reinforcement learning value up-

dates or simply recalculating statistical summaries) [18]. This constitutes a feedback loop where

observations refine the predictive model.

4



5 Applications and Examples: In-Depth Exploration

The versatility and underlying principles of the 2N binary feature model are best understood through

a detailed examination of its application across diverse fields. While the core concept remains consis-

tent—mapping N binary features to an outcome or evaluation via a 2N -sized lookup structure—the

specific implementation, the nature of the features and statistics, the dynamics of updates, and the

practical limitations vary significantly depending on the domain. This section revisits the previously

introduced examples, providing a substantially more detailed analysis of each.

5



5.1 Stock Market Trading Model: A Quantitative Approach

Domain Context: Algorithmic trading within quantitative finance involves using computer programs

to execute trading strategies based on pre-defined rules applied to market data [4]. Strategies often

rely on technical analysis (patterns and indicators derived from historical price and volume data), quan-

titative analysis (mathematical and statistical modeling), and sometimes sentiment analysis (gauging

market mood from news, social media, etc.). The goal is typically to generate profit by exploiting per-

ceived inefficiencies, trends, or statistical arbitrage opportunities in highly competitive and noisy market

environments. The high frequency of data and the need for rapid decision-making make computational

models essential.

Scenario Nuances: Let’s refine the scenario. We consider a mid-frequency algorithmic strategy for a

single, liquid stock (e.g., AAPL on NASDAQ) operating on an hourly timeframe. The algorithm aims

to predict whether the stock price is more likely to rise or fall significantly in the next hour, based on

a snapshot of market conditions at the end of the current hour. A "significant" move might be defined

as exceeding a certain threshold (e.g., 0.1% of the current price) to overcome transaction costs and

slippage. The decisions are Buy (if significant rise predicted), Sell/Short (if significant fall predicted), or

Hold (otherwise).

Feature Selection (N Features): The choice of N binary features is critical and forms the core of

the strategy’s "view" of the market. Our previous N = 6 example can be expanded upon:

• F1: Short-Term Trend (Price vs. Moving Average): ‘Price > 50-hour Exponential Moving

Average (EMA)? (1/0)‘. EMA gives more weight to recent prices. The 50-hour period captures a

short-to-medium term trend.

Challenge: Threshold crossing can generate whipsaws (rapid back-and-forth signals) in sideways

markets.

• F2: Momentum (RSI): ‘Relative Strength Index (RSI, 14-hour) > 55? (1/0)‘. RSI measures

the speed and change of price movements. Values above 50 (or a slightly higher threshold like 55

to reduce noise) indicate bullish momentum.

Alternative: Could use a MACD (Moving Average Convergence Divergence) signal line crossover

instead.

Challenge: RSI can stay in overbought (>70) or oversold (<30) territory for extended periods

during strong trends.

• F3: Volatility Regime (ATR): ‘Average True Range (ATR, 14-hour) > 1.5 * Average ATR

(100-hour)? (High Volatility = 1/0)‘. ATR measures market volatility. Comparing recent ATR to

6



a longer-term average helps identify volatility expansions or contractions, which can signal trend

beginnings or endings.

Challenge: Defining the right comparison threshold (1.5x here) is subjective.

• F4: Volume Confirmation (Volume vs. Average): ‘Current Hour Volume > 1.2 * Average

Hourly Volume (50-hour)? (Strong Volume = 1/0)‘. High volume accompanying a price move is

often seen as confirmation of the move’s strength.

Challenge: Volume spikes can occur for idiosyncratic reasons (e.g., large block trades, news events)

not related to the sustainable trend.

• F5: Price Location (Support/Resistance): ‘Price within +/- 0.2

• F6: Market Sentiment (News Analysis): ‘Real-time News Sentiment Score (e.g., from Raven-

Pack, Bloomberg) > 0.6? (Positive News = 1/0)‘. Incorporates external information. Sentiment

scores often range from -1 (very negative) to +1 (very positive).

Challenge: Sentiment analysis is complex, context-dependent, and may lag price action or be

quickly priced in. Requires access to potentially costly data feeds.

• F7 (Added): Market Regime (e.g., VIX): ‘VIX Index < 20? (Low Fear = 1/0)‘. The VIX

measures implied volatility of S&P 500 options, often seen as a market "fear gauge". Different

strategies may work better in low-volatility vs. high-volatility regimes.

Challenge: VIX reflects broader market sentiment, not necessarily stock-specific conditions.

• F8 (Added): Inter-market Signal (e.g., Sector Trend): ‘Stock’s Sector ETF (e.g., XLK for

tech) Trend > 20-hour MA? (Positive Sector = 1/0)‘. Considers if the stock is moving with or

against its broader sector trend.

Challenge: Requires tracking additional instruments.

With N = 8, our state space grows to 28 = 256 distinct market "fingerprints" based on these features.

The key assumption is that these binary snapshots capture sufficient information to predict the next

hour’s price movement statistically. Feature independence is implicitly assumed by the simple lookup

structure, though in reality, many indicators are correlated (e.g., momentum and trend).

The 2N Structure (Implementation):

• Data Structure: For N = 8 (256 states), a simple array or hash map is perfectly feasible. The

index/key can be generated by treating the binary feature vector (f1, f2, . . . , f8) as an 8-bit binary

number (ranging from 0 to 255).

• Population: The table S is populated using historical data (backtesting). For each hour in the

historical dataset (e.g., several years of hourly AAPL data), calculate the feature vector f for that

7



hour. Then, observe the actual price change in the next hour. This outcome is associated with the

state f observed at the start of that next hour.

• Scalability: If N grows much larger (e.g., N = 20, 2N ≈ 1 million; N = 30, 2N ≈ 1 billion), memory

and computational requirements for storing and updating the full table become significant. More

importantly, the amount of historical data needed to reliably estimate the statistic for *every*

state becomes prohibitive (many states may occur rarely or never in the data). This is the curse

of dimensionality in action. For larger N , this lookup table approach breaks down and needs

replacement or augmentation (e.g., dimensionality reduction, models that generalize like linear

regression, decision trees, neural networks).

Statistics & Favorable Outcomes:

• Statistic: The value S[f ] stored for each state f could be:

Average Next-Hour Return: The simple average of all observed percentage price changes in the

hour following an instance of state f in the historical data.

Hit Rate / Probability: The proportion of times the price moved significantly upwards (> thresh-

old) following state f . Another statistic could track the probability of a significant downward move.

Risk-Adjusted Return: E.g., Sharpe Ratio or Sortino Ratio calculated specifically for trades initi-

ated in state f .

Classification: A categorical label: "Likely Up", "Likely Down", "Likely Flat", determined by

comparing the average return/probabilities to predefined thresholds.

• Favorable Outcome: Defined by the trading strategy’s goal. If using Average Next-Hour Return, a

state f is favorable ("positive game theory") if S[f ] > C, where C is a positive threshold representing

desired profit potential plus estimated costs/slippage. An unfavorable state might be S[f ] < −C,

suggesting a Sell/Short opportunity. States with −C ≤ S[f ] ≤ C lead to a Hold decision.

• Confidence: The statistical significance of S[f ] is crucial. A state f might have a high average

return based on only a few historical occurrences, making the estimate unreliable. The system

should ideally also store the number of observations (or standard deviation/confidence interval)

for each state’s statistic, using this to temper decisions (e.g., requiring a minimum number of

occurrences before trusting the statistic).

Step Choice & Updating:

• Step Choice (Action): At the end of each hour, the system calculates the current 8-feature vector,

fcurrent. It looks up S[fcurrent] (and perhaps its confidence metric). Based on the comparison with

8



threshold C, it issues a Buy, Sell, or Hold order for the next hour. This is the "step choice" guided

by the table.

• Updating with a Step (Lookup): As the next hour unfolds, market conditions change, leading to

a potentially different feature vector fnew at the end of that hour. The system simply repeats the

lookup process with this new vector.

• Table Calibration/Learning (Crucial): This model is inherently statistical and relies on historical

patterns persisting. The table S needs periodic updating:

Trigger: Can be time-based (e.g., re-calculate daily or weekly using a rolling window of historical

data) or event-based (e.g., after significant market news or observed performance degradation).

Method: Retraining involves re-calculating the statistics (e.g., average returns) for all 256 states

using the chosen historical data window (e.g., the past 2 years of hourly data). This adapts the

model to potentially changing market dynamics.

Online Updates (More Advanced): One could implement incremental updates. If the system was

in state f and observed a return Ractual in the next hour, the stored average S[f ] could be nudged

slightly towards Ractual using a learning rate α: S[f ] ← (1 − α)S[f ] + αRactual. This resembles

reinforcement learning value updates [18]. The count of observations for that state should also be

incremented.

Limitations within Domain:

• Oversimplification: Reduces complex market dynamics to a few binary variables, ignoring magni-

tudes (e.g., how much RSI is above 55), inter-feature correlations, and time-series dynamics (e.g.,

patterns over multiple hours).

• Stationarity Assumption: Assumes historical statistical relationships will hold in the future, which

is often violated in financial markets (regime changes). Regular recalibration mitigates but doesn’t

eliminate this.

• Curse of Dimensionality: As noted, quickly becomes infeasible for larger N due to data sparsity

and computational cost.

• Data Quality & Costs: Relies on clean, timely market data and potentially expensive sentiment

feeds.

• Competition: Simple strategies based on common indicators are unlikely to remain profitable as

they are easily discovered and arbitraged away by more sophisticated players.

9



Connections/Alternatives: This lookup table is a very basic form of quantitative model. More

advanced approaches include:

• Machine Learning Models: Decision Trees, Random Forests, Gradient Boosted Machines (like

XGBoost), Support Vector Machines (SVMs), or Neural Networks can handle larger numbers of

features (binary or continuous), learn complex non-linear relationships, and potentially generalize

better from sparse data [7].

• Time Series Analysis: Models like ARIMA, GARCH (for volatility), or Recurrent Neural Networks

(RNNs, LSTMs) explicitly model the temporal dependencies in financial data, which this simple

state model ignores [3].

• Factor Models: Identify underlying economic or statistical factors driving returns, rather than just

technical indicators.

The 2N model serves as a conceptual building block, illustrating state-based evaluation, but practical

trading systems are typically far more complex.

10



5.2 Binary Logic Circuit Truth Table: Deterministic Mapping

Domain Context: Digital electronics forms the foundation of modern computing and communica-

tion systems. Circuits are built from logic gates (AND, OR, NOT, NAND, NOR, XOR) that perform

Boolean operations on binary inputs (represented as low/high voltage levels, i.e., 0/1). The behavior of a

combinational logic circuit (one without memory elements like flip-flops, whose output depends only on

the current inputs) is completely described by its truth table [12, 9]. Designing, analyzing, and verifying

these circuits are core tasks in computer engineering.

Scenario Nuances: Consider designing a 3-bit adder circuit. This circuit takes two 3-bit binary num-

bers, A = (A2, A1, A0) and B = (B2, B1, B0), and potentially a carry-in bit Cin, and produces a 3-bit sum

S = (S2, S1, S0) and a carry-out bit Cout. Here, the inputs are the individual bits A2, A1, A0, B2, B1, B0,

and Cin.

Feature Selection (N Features): The "features" in this context are simply the circuit’s primary

inputs. For our 3-bit adder with carry-in:

• f1 = A0 (Input bit 0 of number A)

• f2 = A1 (Input bit 1 of number A)

• f3 = A2 (Input bit 2 of number A)

• f4 = B0 (Input bit 0 of number B)

• f5 = B1 (Input bit 1 of number B)

• f6 = B2 (Input bit 2 of number B)

• f7 = Cin (Carry-in bit)

Here, N = 7. These features are inherently binary (0 or 1). They fully define the input condition for the

combinational circuit.

The 2N Structure (Truth Table):

• Data Structure: The 2N structure is precisely the circuit’s truth table. For N = 7, it has 27 = 128

rows. Each row corresponds to one unique combination of the 7 input bits.

• Implementation: Conceptually, it’s a table. In software simulations or analysis tools, it might be

stored as an array, list, or map. In hardware, the "structure" is the physical arrangement of logic

gates that implements the Boolean function defined by the truth table.

11



• Population: The truth table is populated by deriving the output values for each input combination

based on the circuit’s logic function (Boolean equations). For the adder example, this involves

applying the rules of binary addition for each of the 128 possible input patterns. For instance, if

the input is A = (0, 1, 1)2 = 3, B = (1, 0, 1)2 = 5, Cin = 1, the inputs are (A2 = 0, A1 = 1, A0 =

1, B2 = 1, B1 = 0, B0 = 1, Cin = 1). The expected output is 3 + 5 + 1 = 9 = (1, 0, 0, 1)2, so

S = (0, 0, 1) and Cout = 1. This specific output (S2 = 0, S1 = 0, S0 = 1, Cout = 1) would be stored

in the row corresponding to the input vector (0, 1, 1, 1, 0, 1, 1). This population process is entirely

deterministic and derived from mathematical logic.

• Scalability: Truth tables become impractically large for circuits with many inputs (e.g., N = 20

requires over a million rows, N = 32 requires over 4 billion). While fundamental, explicit truth

tables are mainly used for analysis and design of smaller circuits or modules. Larger circuits

are analyzed using more abstract methods (e.g., Hardware Description Languages like Verilog or

VHDL, Binary Decision Diagrams (BDDs), formal verification techniques).

Statistics & Favorable Outcomes:

• Statistic: The "statistic" S[f ] stored for each input combination f is the deterministic output

vector produced by the circuit. For the adder, S[f ] = (S2, S1, S0, Cout). There is no probability or

averaging involved.

• Favorable Outcome: "Favorable" here usually means the circuit produces the correct output ac-

cording to its specification for a given input. During design and verification, the goal is to ensure

the truth table matches the intended function exactly. For example, if designing a circuit to de-

tect prime numbers for 4-bit inputs (N = 4, 16 states), a favorable outcome for input (0, 0, 1, 1)

(representing 3) would be an output of 1 (prime), while for input (0, 1, 0, 0) (representing 4), the

favorable output would be 0 (not prime). The 2N structure (truth table) defines the outcomes.

Step Choice & Updating:

• Step Choice: This corresponds to changing one or more of the input signals (A0...Cin) applied to

the circuit.

• Updating with a Step (Lookup): When the input vector changes from fold to fnew, the physical cir-

cuit (or its simulation) instantaneously (ignoring propagation delays) produces the output defined

by S[fnew] in the truth table. The "lookup" is inherent in the circuit’s operation.

• Table Calibration/Learning: None. The truth table for a combinational logic circuit is fixed by its

design based on Boolean algebra. It does not learn or adapt based on operation history. It represents

12



a static, deterministic mapping. (Note: This contrasts with sequential circuits containing memory,

whose output depends on past inputs as well as current ones).

Limitations within Domain:

• Scalability: The 2N size explosion limits the practicality of explicit truth tables for circuits with

many inputs.

• Combinational Logic Only: This model directly applies only to combinational circuits. Sequential

circuits require state transition tables, which are conceptually related but capture dynamics over

time.

• Ignores Timing/Physical Aspects: The truth table is a purely logical abstraction. It doesn’t capture

timing (propagation delays, setup/hold times), power consumption, or other physical characteristics

of the actual hardware implementation.

Connections/Alternatives:

• Boolean Algebra: The truth table is a direct representation of a Boolean function.

• Karnaugh Maps (K-maps): A graphical method used to simplify Boolean functions for small N

(typically N ≤ 5), visually representing the truth table to find minimal logic implementations.

• Binary Decision Diagrams (BDDs): A data structure that can represent Boolean functions of-

ten much more compactly than truth tables, especially for functions with internal structure or

symmetry. Used in formal verification and logic synthesis tools.

• Hardware Description Languages (HDLs): Languages like Verilog and VHDL describe circuit be-

havior and structure algorithmically, allowing for the design and simulation of much larger systems

than feasible with truth tables alone.

The truth table remains the fundamental definition of combinational logic behavior, perfectly embodying

the deterministic 2N state-to-outcome mapping.

13



5.3 System Configuration Outcome: Managing Complexity

Domain Context: Modern software and hardware systems (servers, databases, operating systems,

network devices, complex applications) often expose numerous configuration parameters (flags, settings,

modes) that control their behavior, performance, and security. Managing these configurations is a critical

task in system administration, DevOps, and IT operations. Incorrect combinations of settings can lead

to suboptimal performance, instability, security vulnerabilities, or complete system failure [20].

Scenario Nuances: Consider configuring a web server (e.g., Apache HTTP Server) for hosting a high-

traffic e-commerce website. There might be dozens or hundreds of potential configuration directives (e.g.,

in ‘httpd.conf‘), but let’s focus on a subset related to performance and security. We simplify the outcome

to a few key states: "Optimal", "Functional", "Slow", "Insecure", "Crash".

Feature Selection (N Features): We select N configuration settings that can be reasonably repre-

sented as binary choices (on/off, enable/disable, choice A/choice B). Examples:

• F1: KeepAlive Enabled? (1/0): Allows multiple requests over the same TCP connection (improves

performance). ‘1=On‘.

• F2: HTTP/2 Protocol Enabled? (1/0): Newer protocol with performance benefits (multiplexing).

‘1=On‘.

• F3: Max Connections High? (1/0): Is ‘MaxRequestWorkers‘ set above a certain threshold (e.g.,

256)? ‘1=High‘. Needs tuning based on server resources.

• F4: SSL/TLS Strong Cipher Suite? (1/0): Is the configuration using only recommended secure

cipher suites? ‘1=Yes‘.

• F5: Access Logging Enabled? (1/0): Records incoming requests (useful for debugging/analytics,

minor performance overhead). ‘1=On‘.

• F6: ModSecurity (WAF) Enabled? (1/0): Web Application Firewall enabled for security. ‘1=On‘.

Can have performance impact.

• F7: Content Caching Module Enabled? (e.g., mod_cache) (1/0): Server-side caching of content.

‘1=On‘.

• F8: Server-Side Includes (SSI) Enabled? (1/0): Allows embedding dynamic content (potential

performance/security implications). ‘1=On‘.

With N = 8, we have 28 = 256 possible configuration combinations for *just this subset* of features. The

assumption is that the overall system outcome (Optimal, Functional, Slow, etc.) is primarily determined

14



by the combination of these specific settings. Feature independence is a strong assumption here; settings

often interact (e.g., enabling HTTP/2 might implicitly change connection handling).

The 2N Structure (Configuration Knowledge Base):

• Data Structure: A lookup table, database table, or configuration management database (CMDB)

entry mapping the 256 binary vectors (representing configurations) to an outcome category.

• Implementation: Could be a hash map in a diagnostic script, a table in a documentation system,

or rules in a configuration validation tool (e.g., Ansible linter, Puppet catalog validator).

• Population: This is a key challenge. How are the outcomes for each of the 256 configurations

determined?

Expert Knowledge: System administrators document known good/bad configurations based on

experience. Prone to being incomplete or inaccurate.

Vendor Documentation: Default settings and recommendations provide starting points.

Testing/Benchmarking: Systematically testing each configuration (or a subset) under realistic load

conditions to measure performance and check for errors/vulnerabilities. This is time-consuming

but provides empirical data. Automated testing frameworks are essential.

Data Mining Logs: Analyzing historical logs from deployed systems might reveal correlations be-

tween certain configurations and observed issues (e.g., crashes, error rates).

• Scalability: Again, the 2N growth is the main barrier. Real systems have far more than 8 relevant

settings. Exhaustively testing or documenting all combinations is impossible for large N . Focus

shifts to testing default configurations, recommended sets, and known problematic interactions,

leaving many states in the 2N space unexplored or marked as "Unknown/Untested". Configuration

testing often focuses on changing one setting at a time from a known good baseline.

Statistics & Favorable Outcomes:

• Statistic: The value S[f ] is typically a *categorical label* representing the assessed outcome of the

system when run with configuration f . Examples:

‘Optimal‘: Meets performance and security goals.

‘Functional‘: Works correctly but may be suboptimal (e.g., slightly slow, minor security warnings).

‘Slow‘: Unacceptably poor performance under load.

‘Insecure‘: Known security vulnerability exposed.

‘Crash/Unstable‘: Fails to start or crashes under load.

‘Untested/Unknown‘: The outcome for this specific combination has not been determined.

15



• Favorable Outcome: Clearly, "Optimal" is the most favorable. "Functional" might be acceptable.

All other states represent problems to be avoided. The 2N structure acts as a knowledge base to

identify known good configurations and avoid known bad ones.

Step Choice & Updating:

• Step Choice: An administrator or automated script modifies one or more configuration settings

(e.g., editing ‘httpd.conf‘ and restarting Apache). This moves the system from configuration fold

to fnew.

• Updating with a Step (Lookup): Before applying a change (or after, for validation), the administra-

tor/tool consults the 2N knowledge base (the table S) for the intended fnew. If S[fnew] is "Crash"

or "Insecure", the change should likely be avoided or requires mitigation. If it’s "Optimal" or

"Functional", the change is predicted to be safe/beneficial based on current knowledge.

• Table Calibration/Learning: The knowledge base S is typically updated offline based on new

information: New Test Results: As more configurations are tested (e.g., during development or

pre-deployment), the corresponding entries in S are updated from "Unknown" to the observed

outcome. Incident Post-Mortems: If a deployed system with configuration f fails, the entry S[f ]

might be updated to "Crash" or "Unstable" based on the investigation. Security Audits: New

vulnerabilities discovered might flag certain configurations (f) as "Insecure". Software Updates:

A new version of the software (e.g., Apache) might change the behavior or recommendations,

requiring a reassessment and update of the table S. This is typically a slow, knowledge-driven

update process rather than automatic online learning.

Limitations within Domain:

• Scalability: The 2N explosion makes exhaustive coverage impossible for real systems.

• Binary Simplification: Many settings are not binary (e.g., numerical values like ‘MaxRequestWork-

ers‘, string values, file paths). Forcing them into a binary representation (e.g., "High/Low") loses

granularity.

• Interactions: Assumes outcomes depend only on the combination, but complex interactions (where

setting A only matters if setting B is also enabled) might exist but are only captured if explicitly

tested/documented for that specific combination. The model doesn’t inherently represent interac-

tion logic.

• Environment Dependency: The optimal configuration often depends heavily on the specific hard-

ware, workload, and network environment, which are not captured in these simple binary features.

A configuration deemed "Optimal" in testing might be "Slow" in production.

16



• Dynamic Behavior: Doesn’t capture performance degradation over time (e.g., memory leaks) or

behavior under specific rare load patterns.

Connections/Alternatives:

• Configuration Management Tools: Tools like Ansible, Puppet, Chef, SaltStack automate applying

and validating configurations, often using templates and rule-based checks rather than an explicit

2N table.

• Performance Tuning Methodologies: Systematic approaches to testing configurations, often varying

one parameter at a time or using Design of Experiments (DoE) to explore the space more efficiently

than exhaustively.

• Automated Configuration Tuning: Research explores using ML (e.g., Bayesian Optimization, rein-

forcement learning) to automatically find optimal configuration settings by iteratively testing and

learning performance responses [5].

• Formal Methods: Verifying properties (especially security) of configurations using formal logic or

model checking, though often complex to apply.

The 2N model provides a basic conceptual framework for understanding configuration state spaces,

highlighting the combinatorial challenge and the need for structured knowledge, even if its direct imple-

mentation is limited by scale.

17



5.4 Simplified Medical Diagnostic Model: Probabilistic Guidance

Domain Context: Medical diagnosis involves identifying a disease or condition based on patient

information, including symptoms, medical history, physical examination findings, and test results. It’s

often a complex process of differential diagnosis, weighing evidence for multiple possibilities. Clinical

Decision Support Systems (CDSS) aim to assist healthcare professionals by providing reminders, alerts,

diagnostic suggestions, or treatment recommendations based on patient data and medical knowledge [2].

Scenario Nuances: Let’s consider a highly simplified model aimed at suggesting whether a patient

presenting with acute respiratory symptoms is more likely to have Influenza ("Flu") or the Common

Cold, based only on the presence/absence of a few key distinguishing features, perhaps for preliminary

triage by a non-expert or a basic chatbot. The goal is not definitive diagnosis but providing a probabilistic

suggestion or guiding towards appropriate next steps (e.g., "Seek testing" vs. "Rest at home").

Feature Selection (N Features): We select N features that are often used clinically to differentiate

Flu from a Cold, represented binarily:

• F1: Fever Present? (1/0): Subjective or measured temperature elevation (e.g., > 38°C / 100.4°F).

Common and often high in Flu, less common/lower in Colds. ‘1=Yes‘.

• F2: Severe Muscle Aches (Myalgia)? (1/0): Significant body aches are characteristic of Flu, usually

mild or absent in Colds. ‘1=Yes‘.

• F3: Sudden Onset? (1/0): Flu symptoms often appear abruptly, while Colds tend to develop more

gradually. ‘1=Yes‘.

• F4: Extreme Fatigue/Weakness? (1/0): Profound exhaustion is common with Flu, less so with

Colds. ‘1=Yes‘.

• F5: Sore Throat Prominent? (1/0): Often a primary early symptom of a Cold, maybe less so or

later in Flu. ‘1=Yes‘.

• F6: Runny/Stuffy Nose Prominent? (1/0): Typically a hallmark of the Common Cold. ‘1=Yes‘.

• F7: Recent Flu Vaccination? (1/0): Reduces the prior probability of Flu. ‘1=Yes‘.

Here, N = 7, leading to 27 = 128 possible symptom/history profiles within this simplified model.

The features chosen are common discriminators, but their presence/absence can vary, and reporting is

subjective. Independence is unlikely (e.g., fever and aches often co-occur).

18



The 2N Structure (Symptom Profile Database):

• Data Structure: A 128-entry table or database mapping each 7-bit binary vector (symptom profile)

to a diagnostic suggestion or probability.

• Implementation: Could be rules in an expert system shell, a lookup array in code, or a table

populated from clinical data.

• Population: This is critical and relies on medical knowledge or data:

Expert Rules: Clinical experts define rules based on established diagnostic criteria (e.g., "IF

Fever=1 AND Myalgia=1 AND SuddenOnset=1 THEN Likelihood(Flu) is High"). This popu-

lates the table based on logical combinations.

Clinical Data Analysis: Analyze a large dataset of patients presenting with respiratory symptoms

where the final diagnosis (Flu or Cold, confirmed by lab tests if possible) is known. For each of

the 128 profiles f , calculate the proportion of patients with that profile who were ultimately diag-

nosed with Flu versus Cold. This populates S[f ] with empirical probabilities. Requires substantial,

reliable data.

• Scalability: While N = 7 is manageable, real diagnosis considers far more factors (age, comor-

bidities, specific physical findings, test results). Adding even a few more binary features makes

the 2N table huge and data sparsity becomes a major issue – many profiles would have few or no

corresponding patients in the dataset.

Statistics & Favorable Outcomes:

• Statistic: The value S[f ] stored for symptom profile f could be:

Likelihood Ratio: The probability of observing profile f given Flu, divided by the probability of

observing it given Cold. Probability (Posterior): The estimated probability P (Flu|f), calculated

using Bayes’ theorem based on the prevalence of Flu/Cold and the frequencies derived from clinical

data. Requires knowing prior probabilities.

Categorical Suggestion: "Likely Flu", "Likely Cold", "Indeterminate", based on comparing the

probability/likelihood ratio to thresholds. Recommended Action: "Recommend Flu Test", "Symp-

tomatic Care Advised", "Monitor Symptoms".

• Favorable Outcome: In this context, "favorable" means the system provides useful and safe guid-

ance. This could be correctly identifying a high likelihood of Flu (leading to appropriate test-

ing/treatment) or correctly identifying low likelihood (avoiding unnecessary tests/medication). An

"Indeterminate" result, while not a diagnosis, is favorable if it accurately reflects the ambiguity

based on the limited features and prevents premature conclusions. The goal is decision support,

not autonomous diagnosis.

19



Step Choice & Updating:

• Step Choice: Gathering more information. A clinician asks about another symptom, takes a

temperature, or gets a rapid flu test result. This determines the value of one of the features fi,

effectively moving the system towards a more specific state f within the 2N space (or potentially

adding a new feature dimension if a test result is added).

• Updating with a Step (Lookup): As the feature vector fnew becomes more defined, the system looks

up the corresponding entry S[fnew] to get the updated probability, likelihood, or recommendation.

• Table Calibration/Learning: The knowledge base S (probabilities or rules) needs updating as med-

ical understanding evolves or new population data becomes available:

Trigger: Periodically (e.g., annually, especially considering flu season variations) or when new large

clinical studies are published or diagnostic guidelines change.

Method: If based on data, re-analyze the latest clinical datasets to recalculate the probabilities

P (f |Disease) for all relevant profiles f . If rule-based, update the rules according to new expert con-

sensus or guidelines. Bayesian systems would update prior probabilities based on current prevalence

data.

Limitations within Domain (Very Significant):

• Extreme Oversimplification: Real diagnosis is vastly more complex, involving symptom nuances

(severity, timing), extensive patient history, physical exam, continuous test values, and clinical

judgment. Reducing this to a few binary features loses critical information.

• Symptom Subjectivity/Variability: Patient reporting of symptoms is subjective and variable. Bi-

nary representation (present/absent) is crude.

• Feature Independence Assumption: Symptoms are often highly correlated. The model doesn’t

handle these correlations explicitly.

• Ignoring Alternative Diagnoses: This model only considers Flu vs. Cold, ignoring many other

conditions with overlapping symptoms (e.g., Strep throat, COVID-19, pneumonia). This is a

major safety concern if used improperly.

• Ethical Concerns: Over-reliance on such a simplified tool could lead to misdiagnosis or delayed

appropriate care. It must be presented strictly as a potential aid, not a substitute for professional

medical evaluation.

Connections/Alternatives:

20



• Bayesian Networks: Probabilistic graphical models that can represent dependencies between vari-

ables (symptoms, diseases, tests) and perform probabilistic inference more effectively than a simple

lookup table, handling missing data and correlations [10].

• Scoring Systems: Simple additive scoring systems (e.g., assigning points for certain symptoms) are

sometimes used for initial risk stratification.

• Machine Learning Classifiers: Training models (like Logistic Regression, SVMs, Neural Networks)

on large clinical datasets to predict diagnoses based on a wider range of (potentially non-binary)

features.

• Expert Systems (Rule-Based): More sophisticated rule bases incorporating complex logic and un-

certainty handling (e.g., MYCIN, though dated).

• Clinical Practice Guidelines: Narrative guidelines developed by medical bodies, representing expert

consensus.

The 2N model here serves mainly to illustrate the concept of mapping feature combinations (symptom

profiles) to outcomes (diagnostic likelihoods) but is far too simplistic for reliable real-world medical use

without significant caveats and integration into a broader clinical workflow.

21



5.5 Product Fault State Analysis: Guided Troubleshooting

Domain Context: Troubleshooting complex equipment (e.g., industrial machinery, vehicles, electronic

devices, software systems) involves diagnosing the root cause of a failure based on observed symptoms

or test results. Effective troubleshooting minimizes downtime and repair costs. Diagnostic guides, repair

manuals, and automated diagnostic systems aim to structure this process [15].

Scenario Nuances: Consider diagnosing why a laser printer is failing to print. Symptoms might

include error messages on the display, status indicator lights, unusual noises, or specific print quality

issues. The goal is to identify the faulty component or subsystem (e.g., toner cartridge, fuser unit, paper

tray sensor, driver software) to guide the repair action.

Feature Selection (N Features): We define N binary features based on observable states or simple

diagnostic tests:

• F1: Power LED On? (1/0): Basic check if the printer receives power. ‘1=On‘.

• F2: Error Code Displayed? (1/0): Specific error codes often point directly to issues. ‘1=Yes‘.

(Could be refined to multiple features per code group).

• F3: Toner Low/Empty Warning? (1/0): Status message or indicator light. ‘1=Yes‘.

• F4: Paper Jam Indicated? (1/0): Status message or indicator light. ‘1=Yes‘.

• F5: Printer Responds to Ping? (Network Printer) (1/0): Checks basic network connectivity.

‘1=Yes‘.

• F6: Test Page Printed Successfully from Control Panel? (1/0): Isolates printer hardware from

computer/driver issues. ‘1=Yes‘.

• F7: Unusual Noise During Startup/Operation? (1/0): Grinding, clicking sounds can indicate

mechanical problems. ‘1=Yes‘.

• F8: Print Quality Issue (Streaks, Smudges)? (1/0): Points towards toner, drum, or fuser issues.

‘1=Yes‘.

With N = 8, we have 28 = 256 possible fault signature states. These features represent common initial

checks a user or technician might perform. Independence is again an approximation (e.g., a paper jam

might trigger a specific error code).

22



The 2N Structure (Fault Signature Map):

• Data Structure: A lookup table mapping each 8-bit fault signature f to a likely cause or recom-

mended next step.

• Possible implementations:

A troubleshooting flowchart in a printed manual.

A database in a diagnostic software tool.

Rules in an expert system for technicians.

A knowledge base for a support chatbot.

• Population: Primarily based on: Engineering Knowledge: Design engineers predict failure modes

and their likely symptoms based on the printer’s architecture (Failure Mode and Effects Analysis

- FMEA).

Historical Repair Data: Analyzing records from service centers to correlate observed symptom

patterns (f) with the actual faults found and repairs performed.

Technician Expertise: Capturing the diagnostic logic used by experienced technicians.

• Scalability: For complex systems with many potential failure points and sensors (N becomes large),

the explicit 2N table is often replaced by more structured approaches like fault trees or model-based

reasoning. However, for specific common fault signatures, an explicit lookup might be efficient.

Statistics & Favorable Outcomes:

• Statistic: The value S[f ] stored for fault signature f is typically: Most Likely Fault: Identification

of the component or subsystem most likely responsible (e.g., "Replace Toner Cartridge", "Check

Fuser Assembly", "Clear Paper Path Sensor J4").

Probability Distribution: A list of possible faults ranked by probability, given the signature f .

Recommended Next Test: Suggestion for the next diagnostic step likely to provide the most infor-

mation to isolate the fault (e.g., "Print internal test page", "Check paper tray sensor voltage").

Reference: Pointer to a specific section in the repair manual or knowledge base article.

• Favorable Outcome: A "favorable" outcome in this context is *diagnostic efficiency*. The table

should ideally lead the user/technician quickly to the correct root cause and repair action for a

given fault signature, minimizing unnecessary tests or component replacements. An entry leading

to a successful repair is highly favorable. An entry suggesting an efficient next test is also favorable.

Step Choice & Updating:

• Step Choice: Performing a diagnostic action or observation. The user checks an LED status

(determines f1), reads an error code (f2), attempts to print a test page (f6), or is prompted by

23



the system to perform a specific test suggested by S[fcurrent]. Each step helps refine the current

feature vector f .

• Updating with a Step (Lookup): As more feature values are determined, the system uses the up-

dated vector fnew to query the 2N table. This provides a refined diagnosis or the next recommended

action based on the accumulated information. This iterative process continues until a specific fault

is identified with high confidence or a repair action is suggested.

• Table Calibration/Learning: The diagnostic knowledge base S can be updated over time:

Feedback Loop: Technicians can provide feedback on whether the suggested diagnosis/repair for a

given signature f was correct. This feedback can be used to update the probabilities or rankings

associated with S[f ].

New Failure Modes: As the product ages or new issues emerge, new fault signatures (f) and

corresponding causes/solutions may be discovered and added to the table.

Data Mining Service Records: Periodically analyzing large numbers of repair records can refine the

statistical links between symptom signatures and root causes across the entire table.

Limitations within Domain:

• Binary Simplification: Many diagnostic indicators are not simply binary (e.g., specific error codes,

voltage measurements, print quality nuances).

• Intermittent Faults: Faults that occur sporadically are difficult to capture with a static symptom

signature.

• Multiple Faults: The model implicitly assumes a single root cause corresponding to the signature

f . Handling simultaneous independent or dependent faults is more complex.

• Incomplete Information: Users may not be able to accurately determine all features (e.g., correctly

identifying unusual noises). The system needs to handle unknown feature values (perhaps by

considering multiple matching states).

• Scalability: As mentioned, complex systems require more sophisticated diagnostic models than a

flat 2N table.

Connections/Alternatives:

• Fault Trees: A graphical top-down analysis method representing logical combinations of basic

events that lead to a system failure.

• Expert Systems: Rule-based systems encoding diagnostic logic, potentially handling uncertainty

and more complex reasoning.

24



• Model-Based Diagnosis: Comparing observed system behavior to a model of correct behavior to

identify discrepancies and infer faults [6].

• Case-Based Reasoning: Finding previous repair cases with similar symptoms to the current problem

to suggest solutions.

• Machine Learning for Predictive Maintenance: Analyzing sensor data over time to predict failures

before they occur, rather than diagnosing them afterward.

The 2N structure represents a simple form of fault signature analysis, useful for common problems or as a

component within a larger diagnostic system. It embodies the mapping from observable state indicators

to diagnostic conclusions.

25



5.6 Simplified Game Subproblem Oracle: Pre-computed Game Values

Domain Context: Combinatorial Game Theory (CGT) analyzes games with perfect information, no

chance, and typically two players alternating moves (e.g., Nim, Chess endgames, Go subgames). A key

goal is to determine the outcome (Win, Loss, Draw) from any given game position assuming optimal play.

For certain classes of games (especially impartial games, where available moves depend only on the state,

not whose turn it is), the Sprague-Grundy theorem allows decomposition into subgames, analyzed using

Nim-values (or nimbers) [1, 17]. For complex games like Chess or Go, analyzing restricted subproblems

or endgames where the state space is smaller is crucial for building effective AI players [16].

Scenario Nuances: Consider the game of Nim played with 3 heaps of stones. A state is defined by the

number of stones in each heap (h1, h2, h3). Players take turns removing any number of stones (>0) from

a single heap. The player who takes the last stone wins (normal play convention). The Sprague-Grundy

theorem states that any position in an impartial game is equivalent to a Nim heap of a certain size

(its Nim-value or Grundy number, often denoted g). A position has Nim-value 0 if and only if it is a

P-position (Previous player winning, i.e., the player whose turn it was wins - meaning the current player

loses). A position has Nim-value > 0 if and only if it is an N-position (Next player winning, i.e., the

current player can force a win). The Nim-value of a sum of independent games (like the 3 heaps in Nim)

is the bitwise XOR sum of the Nim-values of the subgames (the heaps). For a single heap of size k, the

Nim-value is simply k. So, the Nim-value of position (h1, h2, h3) is g(h1, h2, h3) = h1 ⊕ h2 ⊕ h3, where

⊕ is bitwise XOR.

Feature Selection (N Features): How can we use the 2N model here? While Nim itself is solved

directly by XOR, imagine a related game or subproblem where the outcome depends on the *parity*

(odd/even) of certain game components or features. Let’s define N binary features representing these

parities:

• F1: Parity of component 1 value? (1=Odd / 0=Even)

• F2: Parity of component 2 value? (1=Odd / 0=Even)

• ...

• FN : Parity of component N value? (1=Odd / 0=Even)

Alternatively, in a Chess endgame, features might be:

• F1: King Opposition Achieved? (1/0)

• F2: Pawn on 7th Rank? (1/0)

• F3: Opponent King Confined to Edge? (1/0)

26



• F4: Material Advantage Sufficient for Mate? (Simplistic binary assessment) (1/0)

Here N is small, and the features attempt to capture crucial aspects of the position in a binary way.

Let’s focus on the parity example as it links directly to Nim-values. If the game’s outcome (Win/Loss

= N/P position) depends only on the XOR sum of the parities of N independent components (similar

to how Nim depends on the XOR sum of heap sizes), then the state can be simplified to these N binary

parity features.

The 2N Structure (Outcome Oracle):

• Data Structure: A lookup table (oracle) of size 2N . The index is the N -bit vector f = (f1, . . . , fN )

representing the parities.

• Implementation: For small N , an array or map. For Chess endgames, specialized data structures

(bitboards, endgame tablebases) are used, which implicitly store the outcome for all reachable

positions defined by piece locations (a much larger state space than our simplified feature model).

• Population: Based on game theory:

For the Parity Game: The outcome (P/N position) is determined by the XOR sum of the parities:

f1 ⊕ f2 ⊕ · · · ⊕ fN . The position is P (Losing, value 0) if the XOR sum is 0, and N (Winning,

value > 0) if the XOR sum is 1. The 2N table stores this result (0 or 1) for each of the 2N parity

combinations. This table is identical to the truth table of an N -input XOR gate.

For Chess Endgames: Endgame Tablebases (EGTBs) are constructed retrospectively via exhaus-

tive search (retrograde analysis) from mate/stalemate positions backwards. They store the exact

outcome (Win/Loss/Draw) and distance-to-mate for every possible position of the few pieces in-

volved [19]. This is a perfect information oracle for that specific endgame, far more complex than

our simple binary feature model but conceptually similar in storing pre-computed outcomes.

• Scalability: The pure 2N feature model based on simplified binary features is only useful if the

game dynamics truly depend only on those few features. EGTBs demonstrate the power of pre-

computation but are only feasible for very small numbers of pieces (currently up to 7 pieces).

Statistics & Favorable Outcomes:

• Statistic: The value S[f ] stored for state f is the deterministic game-theoretic outcome or value:

Win/Loss/Draw status: (e.g., 1 for Win, 0 for Loss, 0.5 for Draw for the current player).

P/N position status: (0 for P-position/Losing, 1 for N-position/Winning). This is the case for the

parity game based on XOR.

Nim-value (or its parity): For impartial games decomposable via Sprague-Grundy.

Distance to Mate/Conversion: As stored in EGTBs.

27



• Favorable Outcome: An N-position (Winning state) is favorable. A state with a guaranteed Draw

might be favorable if the alternative is losing. A state leading to a faster win (shorter distance-

to-mate) is more favorable than one leading to a slower win. The oracle S directly identifies these

favorable states based on the pre-computed game theory.

Step Choice & Updating:

• Step Choice: A player makes a move in the game. This changes the underlying game state (heap

sizes, piece positions), which in turn may change one or more of the binary features fi, leading to

a transition from fold to fnew. Optimal play involves choosing a move that leads to an unfavorable

state for the opponent (e.g., moving from an N-position to a P-position).

• Updating with a Step (Lookup): After a move leads to state fnew, the player (or AI) consults the

oracle S by looking up S[fnew]. This immediately reveals the game-theoretic value of the resulting

position (within the model’s accuracy). The AI would typically analyze all possible moves, look

up the outcome for each resulting state fnew, and choose the move leading to the best possible

outcome (e.g., moving to a P-position if currently in an N-position).

• Table Calibration/Learning: None for games solved by pure CGT or EGTBs. The table S repre-

sents the mathematically proven or exhaustively computed true outcome for the states it covers.

It is static once generated. (Note: For complex games like full Chess/Go where outcomes are

estimated using evaluation functions rather than known perfectly, those evaluation functions are

learned/tuned).

Limitations within Domain:

• Simplification: Reducing complex game states (like Chess positions) to a few binary features loses

almost all strategic information. This model is only useful if the chosen features provably determine

the outcome, which is rare outside specific CGT contexts (like parity games) or highly simplified

subproblems.

• Applicability: Directly applicable only to games or subproblems where the state can be meaning-

fully captured by a small number of binary determinants or where exhaustive analysis (like EGTBs)

is feasible. Not applicable to general play in complex games like Chess or Go.

• State Space Size: Even for EGTBs, the underlying state space (defined by piece positions) grows

astronomically, limiting their construction to few-piece endgames.

Connections/Alternatives:

28



• Sprague-Grundy Theorem: Provides the theory for analyzing impartial games using Nim-values

(often calculated via XOR).

• Endgame Tablebases (EGTBs): Practical, large-scale implementations of pre-computed oracles for

Chess and other games.

• Game AI Search Algorithms: Minimax, Alpha-Beta pruning, Monte Carlo Tree Search (MCTS)

are algorithms used to explore the game tree when outcomes are not fully pre-computed. They

rely on heuristic evaluation functions to estimate position values.

• Heuristic Evaluation Functions: Functions used in game AI to estimate the value of a position

based on various features (material balance, mobility, king safety, etc.), which are often numerous

and non-binary. These functions are often learned or tuned using ML.

The 2N model serves as a conceptual link to the idea of pre-computed game outcomes (oracles). It

perfectly describes situations where the outcome is determined by the XOR sum of binary properties

(like parity) and provides a highly simplified analogy to the principle behind complex structures like

EGTBs.

29



5.7 Integrating Multiple Tables for Diverse Problems

The preceding examples illustrate the application of the 2N model to distinct, self-contained problems.

However, many complex real-world systems or multifaceted analyses require addressing several different

aspects simultaneously or sequentially. This raises the possibility of integrating multiple 2N lookup

tables, each tailored to a specific subproblem or domain, within a unified framework or system.

Concept and Motivation: Instead of a single monolithic table, one could maintain a collection of

tables {S1, S2, . . . , Sk}. Each table Sj might correspond to:

• Different feature sets (Nj features for table j).

• Different types of statistics or outcomes (e.g., S1 stores probabilities, S2 stores optimal actions, S3

stores deterministic outcomes).

• Different contexts or modes of operation (e.g., different tables for market conditions, different

diagnostic procedures, different game phases).

The motivation is modularity, manageability, and the ability to apply the most relevant specialized model

to each part of a larger problem. For instance, a comprehensive system diagnostic tool might first consult

a general health table (S1) based on broad symptoms, and if that indicates a specific subsystem fault, it

might then consult a specialized table (S2) using detailed features relevant only to that subsystem.

Structure and Implementation: Such integration could be realized in several ways:

• Hierarchical Lookup: A primary decision mechanism determines which table (Sj) is appropriate

based on the current context or initial input, then queries that specific table.

• Centralized Knowledge Base: A larger data structure (e.g., a database, a knowledge graph)

could store multiple 2N -like structures, perhaps indexed by problem type or feature space identifier.

• Parallel Evaluation: Multiple tables could be queried simultaneously, with their results combined

or prioritized based on predefined rules or confidence scores. Imagine a trading system consulting

separate tables for technical signals, fundamental data indicators, and sentiment analysis, then

integrating their recommendations.

Benefits and Challenges:

• Benefits: This approach offers modularity (easier to update or replace individual tables), special-

ization (each table optimized for its task), and potentially better scalability by breaking down a

massive problem into smaller, manageable 2N spaces. It allows combining deterministic, proba-

bilistic, and heuristic knowledge within one system.

30



• Challenges: Designing the integration logic (how to choose the right table or combine results) can

be complex. Ensuring consistency between tables (if they overlap in scope or features) is crucial.

Managing the overall complexity of the integrated system and avoiding conflicts or ambiguities

requires careful design. The "curse of dimensionality" might still apply within each individual

table if its Nj is large.

This concept extends the utility of the 2N model from isolated problems to composite systems,

providing a structured way to manage and query diverse, pre-computed or learned knowledge bases

derived from binary feature representations. It aligns with the principle of decomposing complex problems

into simpler, analyzable parts, while maintaining a unified interface for prediction and evaluation.

31



6 Discussion

The 2N binary feature model provides a structured way to simplify complex systems, making analysis

tractable. Its strength lies in transforming potentially infinite or intractably large state spaces into a

finite, discrete space where each point (feature combination) has a directly associated evaluation.

Strengths:

• Tractability: For small to moderate N , the 2N table is manageable in size and allows for O(1)

lookup once computed.

• Interpretability: Binary features can often be designed to be human-understandable, making the

model easier to interpret than some complex black-box models.

• Versatility: Applicable to both deterministic systems (logic, configuration) and statistical/probabilistic

systems (finance, diagnostics) by storing appropriate statistics.

• Foundation for Learning: In dynamic systems, the 2N table can serve as a value function

or policy map, updatable via learning algorithms like Q-learning or temporal difference learning,

especially if actions are explicitly modeled [18].

Limitations:

• Curse of Dimensionality: The primary limitation is the exponential growth of the state space

(2N ) with the number of features N . This restricts the practical application to systems where the

essential state can be captured by a relatively small number of binary features (e.g., N < 20-30,

depending on computational resources).

• Feature Selection and Engineering: The model’s effectiveness hinges entirely on the choice of

the N features. Selecting features that are both relevant to the outcome and reasonably independent

is critical and often challenging. Poor feature selection leads to a poor model.

• Information Loss: Simplifying a complex state into N binary features inevitably discards in-

formation. The model captures the system’s behavior only as projected onto this reduced feature

space. Nuances and interactions not captured by the chosen features are ignored.

• Binary Constraint: Forcing features to be binary might be an unnatural simplification for in-

herently continuous or multi-valued variables, potentially losing fidelity.

Connections to Other Fields:

32



• Machine Learning: The 2N lookup table is one of the simplest forms of function approximation

or classification models. It relates to k-nearest neighbors (with k=1 and a specific distance metric

on the hypercube), decision trees (which implicitly partition the feature space), and rule-based

systems [13, 7]. Feature engineering is a core concept in ML.

• State-Space Search: The model defines a discrete state space. Finding optimal policies or

configurations can be viewed as a search problem within this space, potentially guided by the

statistics in the table [16].

• Boolean Algebra and Digital Logic: The model is fundamentally based on Boolean logic when

outcomes are deterministic, directly mirroring truth tables [12].

• Expert Systems: The structure resembles the knowledge base in some rule-based expert systems

where combinations of conditions lead to specific conclusions [8].

Regarding "Positive Game Theory": While standard game theory often distinguishes between

normative (how players should play) and positive/descriptive (how players do play) analysis, our use

here is operational: identifying states predicted to lead to good outcomes for the entity applying the

model (player, system designer, diagnostician). This aligns with the goal-oriented nature of AI and

decision support systems.

33



7 Conclusion

Representing system states using N binary features creates a structured 2N combinatorial space. A

corresponding data structure storing evaluations for each state serves as a powerful tool for analysis and

prediction within this simplified model. It allows for the direct identification of states associated with

favorable outcomes (our operational definition of "positive game theory" in this context) and provides

a framework for understanding state transitions ("step choices") and updating evaluations ("updating

with a step").

Despite the significant limitation of the exponential growth of the state space with N (the curse

of dimensionality) and the challenge of effective feature selection, the model offers tractability, inter-

pretability, and versatility across diverse domains, from deterministic logic to statistical prediction and

game analysis. The examples illustrate its broad applicability as a fundamental concept for simplifying

complexity and guiding decisions based on a finite, discrete representation of reality. This approach

remains a valuable component in the toolkit for modeling, analyzing, and controlling complex systems.

34



8 Biography

Blake M. Burns is the founder of Dragonex Technologies, a Canadian technology company focused on

delivering secure, cutting-edge solutions driven by research and a deep understanding of the digital

landscape. Educated in Computer Science at the University of Toronto, his work centers on leveraging

technology to solve real-world problems, with a particular emphasis on data privacy and security. He

is recognized as a Mensa scholar and maintains a research profile on Google Scholar, where his work

potentially includes projects like Darksort.

35



References

[1] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways for Your Mathematical

Plays. A K Peters/CRC Press, 2nd edition, 2001-2004. (Fundamental work on Combinatorial Game

Theory, discusses state evaluation, P/N positions, Nim-values).

[2] Eta S. Berner, editor. Clinical Decision Support Systems: Theory and Practice. Springer Science &

Business Media, 2nd edition, 2007. (Covers the theory and application of CDSS in healthcare).

[3] George E.P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. Time Series

Analysis: Forecasting and Control. John Wiley & Sons, 5th edition, 2015. (Standard reference for

time series models like ARIMA).

[4] Ernest P. Chan. Quantitative Trading: How to Build Your Own Algorithmic Trading Business. John

Wiley & Sons, 2009. (Practical introduction to algorithmic trading strategies).

[5] Tianqi Chen, Tianyi Zhou, and Carlos Guestrin. Automated Configuration Tuning Using Bandit

Optimization. In Proceedings of the 2017 USENIX Annual Technical Conference (USENIX ATC

17), pages 395–407, 2017. (Example of advanced ML for configuration tuning).

[6] Johan de Kleer and Brian C. Williams. Diagnosing Multiple Faults. Artificial Intelligence, 32(1):97–

130, 1987. (Classic paper on model-based diagnosis).

[7] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer Science & Business Media, 2nd edition, 2009.

(Comprehensive text covering many machine learning models).

[8] Peter Jackson. Introduction to Expert Systems. Addison-Wesley, 3rd edition, 1998. (Covers rule-

based systems which share conceptual similarities with lookup tables based on conditions).

[9] Randy H. Katz and Gaetano Borriello. Contemporary Logic Design. Pearson Prentice Hall, 2nd

edition, 2004. (Textbook covering digital logic design principles).

[10] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT

Press, 2009. (Comprehensive text on Bayesian networks and related models).

[11] Michael Leyton-Brown and Yoav Shoham. Essentials of Game Theory: A Concise, Multidisciplinary

Introduction. Morgan & Claypool Publishers, 2008. (Provides a modern overview of game theory

concepts, including expected utility).

[12] M. Morris Mano and Michael D. Ciletti. Digital Design. Prentice Hall, 4th edition, 2008. (Standard

text on digital logic, truth tables are central).

36



[13] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997. (Classic textbook covering various ML

models, including concepts relevant to feature spaces and simple classifiers).

[14] John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton

University Press, 1944. (The foundational text of modern game theory).

[15] Krishna R. Pattipati and Mark G. Alexandridis. Application of Heuristic Search and Information

Theory to Sequential Fault Diagnosis. IEEE Transactions on Systems, Man, and Cybernetics,

20(4):872–887, 1990. (Review covering approaches to fault diagnosis).

[16] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3rd

edition, 2010. (Covers state-space search, game playing AI, machine learning, handling complexity).

[17] Aaron N. Siegel. Combinatorial Game Theory. American Mathematical Society, 2013. (A more

recent, comprehensive mathematical treatment of CGT).

[18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,

2nd edition, 2018. (Covers value functions, state representations, learning in discrete state spaces,

Q-learning).

[19] Ken Thompson. Retrograde Analysis of Certain Endgames. ICGA Journal, 9(3):131–139, 1986.

(Early work on constructing chess endgame tablebases).

[20] Ding Yuan, Yu Luo, Xin Zhuang, and Matthew Caesar. Characterizing and Automatically Finding

Bugs in System Configuration Code. In Proceedings of the 6th Workshop on Hot Topics in System

Dependability (HotDep ’10), Article 5, 2010. (Study on bugs arising from system configurations).

37


	Introduction
	The 2N Feature Space and Data Structure
	Predicting Favorable Outcomes (Contextual "Positive Game Theory")
	Step Choice and Updating
	Applications and Examples: In-Depth Exploration
	Stock Market Trading Model: A Quantitative Approach
	Binary Logic Circuit Truth Table: Deterministic Mapping
	System Configuration Outcome: Managing Complexity
	Simplified Medical Diagnostic Model: Probabilistic Guidance
	Product Fault State Analysis: Guided Troubleshooting
	Simplified Game Subproblem Oracle: Pre-computed Game Values
	Integrating Multiple Tables for Diverse Problems

	Discussion
	Conclusion
	Biography

