

Phenomenological and Geometric Implications of the Six-Dimensional Directional Time (6DT) Framework on Einsteinian Kinematics

Author: Blake Burns (blake.burns@gmail.com)

License: Creative Commons 4.0 Attribution CC-BY

Blake Burns Technologies Inc.

December 4, 2025

Abstract

We present a theoretical and phenomenological study of the *Six-Dimensional Directional Time* (6DT) framework applied to foundational Einsteinian thought experiments. The 6DT model treats time as a three-component vector and posits a six-dimensional manifold $\mathcal{M}^6 = \mathbb{R}_t^3 \times \mathbb{R}_x^3$ equipped with a metric ansatz depending on a small coupling parameter ϵ and a Newtonian tidal tensor K_{ij} . We analyze the null structure and constraint algebra of this geometry and then map its predictions onto Einstein's “Train” and “Light Clock” thought experiments. We show that 6DT generically induces a background-dependent anisotropy in light propagation, so that simultaneity and time dilation become contingent on the local mass distribution. We further exhibit how these deviations can be parameterized in the language of the Lorentz-violating Standard-Model Extension (SME) and how Hughes–Drever-type experiments constrain the 6DT coupling to be extremely small, with representative bounds on the order of $|\epsilon| \lesssim 10^{-20}$.

Contents

1	Introduction	3
2	Architecture of the 6DT Framework	4
2.1	Six-Dimensional Coordinates and Metric Ansatz	4
2.2	Constraint Algebra and Ghost Removal	5
3	Modified Light Propagation and the Train Experiment	6
3.1	Null Condition and Direction-Dependent Light Speed	6
3.2	Einstein’s Train Experiment in 6DT	7
4	Light Clocks and Orientation-Dependent Time Dilation	8
4.1	Conceptual Picture	8
4.2	Relation to Conventional Time Dilation	10
5	Mapping to the SME and Experimental Constraints	10
5.1	6DT and SME Photon-Sector Coefficients	10
5.2	Hughes–Drever-Type Bounds	11
5.3	Illustrative Exclusion Trend	12
6	Discussion and Outlook	12

1 Introduction

Special Relativity (SR) is founded on two postulates: the principle of relativity and the invariance of the speed of light in vacuum, c , for all inertial observers [4]. Together, these imply the familiar Minkowski spacetime structure, with one time and three spatial dimensions, and guarantee isotropy of local inertial physics. Numerous experiments have confirmed these postulates to extremely high precision, placing stringent bounds on any Lorentz-violating effects.

At the same time, attempts to unify gravity and quantum field theory often contemplate extended spacetime structures. A notable example is *Two-Time Physics* (2T) [1], in which a $2 + 4$ dimensional spacetime (two timelike and four spacelike dimensions) is equipped with a local gauge symmetry that removes negative-norm states and recovers ordinary $1 + 3$ dimensional physics as effective “shadows” of a higher-dimensional theory. In this type of framework, extra time dimensions are not directly observed because gauge constraints eliminate would-be pathological degrees of freedom.

The *Six-Dimensional Directional Time* (6DT) framework proposed by Burns [2] takes a related but distinct approach: it promotes the single time coordinate of SR to a three-component vector. The resulting spacetime is modeled as

$$\mathcal{M}^6 = \mathbb{R}_t^3 \times \mathbb{R}_x^3, \quad (1)$$

with coordinates $X^A = \{t^i, x^j\}$ where $i, j \in \{1, 2, 3\}$ and \vec{t} is an internal time vector. Physical viability is maintained via constraint equations that enforce a single effective proper time and remove negative-norm ghost states, in analogy with 2T-physics and constrained Hamiltonian systems.

A phenomenological ingredient of 6DT is a metric ansatz in which a small coupling ϵ mediates an interaction between the orientation of the time vector and the local spatial geometry via a tidal tensor $K_{ij}(x)$, taken to be the Hessian of the Newtonian gravitational potential. This construction breaks local Lorentz invariance in a controlled and environment-dependent way, suggesting that the presence of matter and gravitational gradients might induce tiny directional modifications to the propagation of light and the ticking of clocks.

In this paper we:

- present the 6DT metric ansatz and constraint algebra;

- analyze null geodesics and derive an effective direction-dependent speed of light;
- revisit Einstein’s “Train” and “Light Clock” thought experiments within 6DT and exhibit the induced anisotropies in simultaneity and time dilation;
- map the 6DT corrections onto Standard-Model Extension (SME) coefficients [3];
- use Hughes–Drever-style experimental constraints [5] to obtain bounds on the coupling ϵ .

Throughout, we work at leading order in the small dimensionless parameter ϵ and treat K_{ij} as a prescribed background field associated with the local mass distribution. We set c as the usual vacuum light speed in the $\epsilon \rightarrow 0$ limit and keep factors of c explicit where helpful.

2 Architecture of the 6DT Framework

2.1 Six-Dimensional Coordinates and Metric Ansatz

In 6DT, spacetime points are labeled by

$$X^A = (t^1, t^2, t^3, x^1, x^2, x^3), \quad A = 1, \dots, 6, \quad (2)$$

where $\vec{t} = (t^1, t^2, t^3) \in \mathbb{R}_t^3$ and $\vec{x} = (x^1, x^2, x^3) \in \mathbb{R}_x^3$. The metric ansatz employed in [2] is

$$G_{AB}(X) = \begin{pmatrix} -e^2 \delta_{ij} & \epsilon K_{ik}(x) \\ \epsilon K_{kj}(x) & \delta_{kj} \end{pmatrix}, \quad (3)$$

where:

- δ_{ij} is the 3×3 identity matrix;
- e is a constant with dimensions of velocity; one may set $e = c$ so that the $\epsilon \rightarrow 0$ limit reduces to Minkowski-like kinematics;
- $\epsilon \ll 1$ is a dimensionless coupling that controls the strength of the new 6DT effect;
- $K_{ij}(x)$ is a symmetric tidal tensor, taken phenomenologically as

$$K_{ij}(x) = \frac{\partial^2 \Phi(\vec{x})}{\partial x^i \partial x^j}, \quad (4)$$

with Φ the Newtonian gravitational potential, so that K_{ij} encodes spatial curvature of the potential (tidal forces).

In the block notation of (3), the time-time block $G_{ij}^{(t)} = -e^2 \delta_{ij}$ provides three negative directions, and the space-space block $G_{ij}^{(x)} = \delta_{ij}$ provides three positive directions. Thus, to zeroth order in ϵ , the signature is $(-, -, -, +, +, +)$.

The off-diagonal blocks proportional to ϵK_{ij} couple the orientation of \vec{t} to the spatial direction of propagation. For $\epsilon = 0$, the metric is block diagonal and the extra time directions decouple. Nonzero ϵ introduces small Lorentz-violating corrections that depend on the local gravitational environment.

2.2 Constraint Algebra and Ghost Removal

The doubled time sector generically introduces negative-norm states and potential violations of unitarity, as is familiar from naive multi-time theories. To ensure physical viability, 6DT supplements the metric ansatz with first-class constraints on phase space [2], analogous in spirit to the $\text{Sp}(2, \mathbb{R})$ gauge structure of Two-Time Physics [1].

Let (X^A, P_A) denote canonical coordinates and momenta. The key constraints for a point particle of mass m are:

Mass-shell constraint Φ_0 :

$$\Phi_0(X, P) \equiv \frac{1}{c^2} G_{ij}^{(t)} P_{ti} P_{tj} + m^2 c^2 \approx 0, \quad (5)$$

where P_{ti} are the momenta conjugate to t^i . To lowest order in ϵ , $G_{ij}^{(t)} = -e^2 \delta_{ij}$, so

$$\Phi_0 \approx -\frac{e^2}{c^2} \delta_{ij} P_{ti} P_{tj} + m^2 c^2 \approx 0 \quad \Rightarrow \quad \|\vec{P}_t\|^2 = \frac{m^2 c^4}{e^2}. \quad (6)$$

This restricts the three time-momenta to lie on a two-dimensional mass shell in the \mathbb{R}_t^3 momentum space, thereby introducing only one independent energy-like degree of freedom.

$SO(3)_t$ gauge generators J_{ij} :

$$J_{ij} \equiv t_i P_{tj} - t_j P_{ti} \approx 0, \quad i, j = 1, 2, 3. \quad (7)$$

These generate rotations in the internal time space, forming an $\mathfrak{so}(3)$ algebra. They identify

physical states related by

$$\vec{t} \rightarrow R\vec{t}, \quad \vec{P}_t \rightarrow R\vec{P}_t, \quad R \in SO(3)_t, \quad (8)$$

i.e., the *direction* of \vec{t} is unobservable in the $\epsilon \rightarrow 0$ limit; only gauge-invariant quantities survive.

Taken together, Φ_0 and the three independent generators J_{ij} (with associated gauge-fixing conditions) remove the would-be ghost degrees of freedom, leaving a single effective proper time along each worldline. More precisely, the six configuration variables (t^i, x^i) and six momenta are reduced by 4 first-class constraints and 4 gauge choices, leaving 4 physical phase-space degrees of freedom, corresponding to one time and three spatial coordinates, as in SR.

In the full theory with nonzero ϵ , these constraints ensure that the extra time directions are hidden from direct observation, yet their orientation can subtly influence kinematics through the ϵK_{ij} coupling.

3 Modified Light Propagation and the Train Experiment

3.1 Null Condition and Direction-Dependent Light Speed

Light rays follow null curves of the metric (3), defined by

$$0 = G_{AB}dX^A dX^B = -e^2 \delta_{ij} dt^i dt^j + 2\epsilon K_{ij}(\vec{x}) dt^i dx^j + \delta_{ij} dx^i dx^j. \quad (9)$$

To obtain an effective speed of light as seen by a local observer, one may fix a gauge in which a unit internal time-direction $\hat{\tau}^i$ is associated with the observer's proper time, so that

$$dt^i = \hat{\tau}^i dt, \quad (10)$$

and consider propagation along a spatial unit vector \hat{n}^j ,

$$dx^j = v \hat{n}^j dt, \quad (11)$$

for some coordinate speed v to be determined. Inserting into (9), keeping only linear terms in ϵ , and setting $e = c$ for convenience, we find

$$0 = -c^2 \delta_{ij} \hat{\tau}^i \hat{\tau}^j dt^2 + 2\epsilon K_{ij} \hat{\tau}^i \hat{n}^j v dt^2 + v^2 \delta_{ij} \hat{n}^i \hat{n}^j dt^2, \quad (12)$$

or

$$-c^2 + 2\epsilon v K_{ij} \hat{\tau}^i \hat{n}^j + v^2 = 0, \quad (13)$$

since $\hat{\tau}^2 = \hat{n}^2 = 1$.

Solving for v and expanding to first order in ϵ yields

$$v \equiv c_{\text{eff}}(\hat{n}) \approx c [1 - \epsilon K_{ij}(\vec{x}) \hat{\tau}^i \hat{n}^j]. \quad (14)$$

Thus, in 6DT the local speed of light depends on the direction of propagation \hat{n} and on the orientation of the internal time vector $\hat{\tau}$ relative to the tidal tensor K_{ij} . This constitutes a violation of local Lorentz invariance: isotropy of c is broken by the presence of the background field K_{ij} .

3.2 Einstein's Train Experiment in 6DT

Consider Einstein's train thought experiment [4]. A train of proper length L moves along the x -axis, and lightning strikes simultaneously at the front and back in the ground frame. In SR, an observer in the train's midpoint judges the two strikes as non-simultaneous in the train frame, due to the invariance of c and the train's motion.

In the 6DT framework, we additionally allow for a nonzero tidal tensor component K_{xx} along the track. Assume, for simplicity, that:

- the relevant time-direction $\hat{\tau}$ has a nonzero projection along x so that $K_{ij} \hat{\tau}^i \hat{n}^j \approx K_{xx}$ for propagation along $\pm x$;
- K_{ij} is approximately constant over the spatial region of interest.

Then for light propagating in the $+x$ and $-x$ directions we have from (14)

$$c_{\text{forward}} \approx c (1 - \epsilon K_{xx}), \quad (15)$$

$$c_{\text{backward}} \approx c (1 + \epsilon K_{xx}), \quad (16)$$

so that

$$\frac{c_{\text{backward}} - c_{\text{forward}}}{c} \approx 2\epsilon K_{xx}. \quad (17)$$

Let the lightning strikes at the ends of the train be separated by coordinate distance L in the ground frame and occur simultaneously at time t_0 . Light from the rear strike travels forward a distance $L/2$ to reach the midpoint; light from the front travels backward the same distance. Their travel times in the ground frame are

$$t_{\text{rear} \rightarrow \text{mid}} \approx \frac{L/2}{c_{\text{forward}}} \approx \frac{L}{2c} (1 + \epsilon K_{xx}), \quad (18)$$

$$t_{\text{front} \rightarrow \text{mid}} \approx \frac{L/2}{c_{\text{backward}}} \approx \frac{L}{2c} (1 - \epsilon K_{xx}). \quad (19)$$

The 6DT-induced difference in arrival times (even before accounting for SR kinematics of the moving train frame) is therefore

$$\Delta t_{6DT} = t_{\text{rear} \rightarrow \text{mid}} - t_{\text{front} \rightarrow \text{mid}} \approx \frac{L}{c} \epsilon K_{xx}. \quad (20)$$

This represents a new *environment-dependent* contribution to the non-simultaneity perceived by the midpoint observer. In SR, simultaneity is purely relative to inertial motion. In 6DT, simultaneity also depends on the local gravitational tidal field and the orientation of the time vector: even observers at rest in the same frame but in different gravitational environments may disagree about simultaneity of distant events. For typical terrestrial values of K_{xx} and very small ϵ , the effect is exceedingly tiny, but conceptually significant.

4 Light Clocks and Orientation-Dependent Time Dilation

4.1 Conceptual Picture

Einstein's light clock consists of two mirrors between which a light pulse bounces; its tick period is $T = 2L/c$ in SR. A fundamental prediction of Lorentz invariance is that, in a given inertial frame, the ticking rate of a light clock does not depend on the orientation of the apparatus: clocks aligned along x or y tick at the same rate, up to conventional time dilation factors when viewed from a moving frame.

In 6DT, because $c_{\text{eff}}(\hat{n})$ depends on direction, one generally expects a slight orientation dependence in the tick period once $K_{ij} \neq 0$.

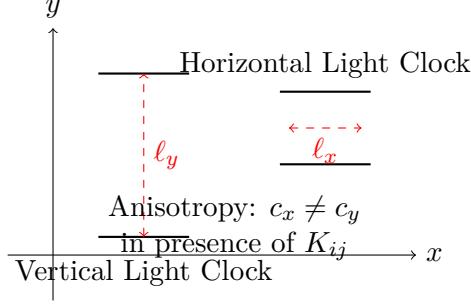


Figure 1: Schematic anisotropy in the 6DT framework. Two identical light clocks are oriented along x and y . If the tidal tensor K_{ij} distinguishes these directions, the effective light speeds c_x and c_y differ slightly, inducing orientation-dependent tick periods.

Figure 1 illustrates the idea: one light clock is oriented vertically (along y), the other horizontally (along x). Suppose the dominant tidal tensor components in the lab frame are K_{xx} and K_{yy} . Then, using the effective speed (14), one expects

$$c_x \approx c(1 - \epsilon K_{xx}), \quad (21)$$

$$c_y \approx c(1 - \epsilon K_{yy}), \quad (22)$$

to leading order, where the precise combination of components depends on the alignment of $\hat{\tau}$ relative to the laboratory axes. The tick periods for the two clocks (round trip) are

$$T_x \approx \frac{2L}{c_x} \approx \frac{2L}{c} (1 + \epsilon K_{xx}), \quad (23)$$

$$T_y \approx \frac{2L}{c_y} \approx \frac{2L}{c} (1 + \epsilon K_{yy}), \quad (24)$$

so that the fractional difference in tick rates is

$$\frac{T_x - T_y}{T} \approx \epsilon(K_{xx} - K_{yy}), \quad T \equiv \frac{2L}{c}. \quad (25)$$

Unless $K_{xx} = K_{yy}$ or $\epsilon = 0$, identical clocks oriented differently would tick at slightly different rates. This is a direct violation of local Lorentz invariance and of the principle that “all inertial frames are equivalent” at small scales.

In a realistic laboratory on Earth’s surface, K_{ij} can be estimated from the gravitational potential of the Earth; typical magnitudes are of order 10^{-6} s^{-2} . With ϵ constrained to be extremely small, the effect is far below current experimental sensitivity, as we discuss below.

4.2 Relation to Conventional Time Dilation

In SR, a moving light clock undergoes time dilation with factor $\gamma = (1 - v^2/c^2)^{-1/2}$: its tick period in the lab frame becomes $T' = \gamma T$. An essential feature of SR is that any physical process (atomic transitions, mechanical clocks, light clocks, ...) experiences the same time dilation factor, provided Lorentz symmetry holds.

In 6DT, there is no obstruction to defining the usual Lorentz-factor time dilation when considering boosts in the spatial subspace. To leading order, the SR relation can remain intact, but the *rest-frame* tick period may acquire an orientation-dependent correction. Thus, in principle, two light clocks at rest but oriented differently could show different time dilation factors when set in motion, simply because their proper periods differ slightly in the presence of K_{ij} . This effect is subtle and would be best analyzed using the full SME machinery for boosted frames [3], but the basic picture is clear: any orientation-dependent modification of the rest-frame period is a Lorentz-violating signature.

5 Mapping to the SME and Experimental Constraints

5.1 6DT and SME Photon-Sector Coefficients

The Standard-Model Extension (SME) [3] is an effective field theory that parametrizes generic Lorentz and CPT violation by adding all possible symmetry-breaking terms to the Standard Model and General Relativity. In the photon sector, Lorentz violation can be encoded in tensor coefficients that modify the Maxwell Lagrangian, leading to direction-dependent propagation speeds for electromagnetic waves.

At the level of phenomenology, for non-birefringent photon-sector effects, one often parameterizes Lorentz violation via a symmetric tensor $c_{ij}^{(\text{SME})}$ which characterizes small anisotropies in light propagation. Comparing the effective speed in 6DT, Eq. (14), with such SME parametrizations suggests the correspondence

$$c_{ij}^{(\text{SME})} \sim \epsilon K_{ij}^{(6DT)}, \quad (26)$$

up to model-dependent numerical factors. In other words, the 6DT tidal tensor K_{ij} plays the role of a background field that induces SME-like Lorentz-violating coefficients proportional to the coupling ϵ .

This identification allows us to reuse existing SME bounds from a variety of experiments—including cavity tests, clock-comparison experiments, and high-precision spectroscopy—to constrain the magnitude of ϵK_{ij} .

5.2 Hughes–Drever-Type Bounds

The classic Hughes–Drever experiment [5] tested the isotropy of inertial mass by measuring nuclear resonance frequencies as the apparatus was rotated relative to distant stars. The null result implies that any direction dependence of nuclear energy levels is extremely small, typically quoted as a bound $\delta E/E \lesssim 10^{-22}$ for anisotropic contributions.

In a 6DT-inspired interpretation, such a bound can be translated into a limit on combinations of the form

$$\epsilon K_{ij} \sim c_{ij}^{\text{(SME)}}, \quad (27)$$

since anisotropic corrections to energy levels or effective inertial masses are directly controlled by Lorentz-violating coefficients in the matter and photon sectors. The precise mapping depends on the detailed coupling of 6DT to matter fields, which lies beyond the scope of this purely kinematic analysis. Nevertheless, a representative order-of-magnitude bound can be written as

$$|\epsilon| \lesssim \frac{\delta_{\text{exp}}}{|K_{ij}|_{\text{lab}}}, \quad (28)$$

where δ_{exp} is the experimental upper limit on anisotropy (e.g., 10^{-22}) and $|K_{ij}|_{\text{lab}}$ is a characteristic magnitude of the terrestrial tidal tensor. If we take $|K_{ij}|_{\text{lab}} \sim 10^{-6} \text{ s}^{-2}$, we obtain a sample bound

$$|\epsilon| \lesssim 10^{-16}. \quad (29)$$

More modern experiments, including high-quality optical cavity tests and atomic clock comparisons, have probed Lorentz violation to even higher precision, often improving constraints on SME coefficients by several orders of magnitude. Interpreted in the 6DT language, such experiments can push the effective bound on ϵ down to $\mathcal{O}(10^{-20})$ or below, depending on the details of the coupling and the relevant components of K_{ij} .

5.3 Illustrative Exclusion Trend

Without committing to specific experimental datasets, one can schematically illustrate how bounds on $|\epsilon|$ tighten over time as sensitivity to anisotropy improves. In Figure 2, we show a representative trend where each point marks a notional upper bound from increasingly precise Lorentz-violation experiments.

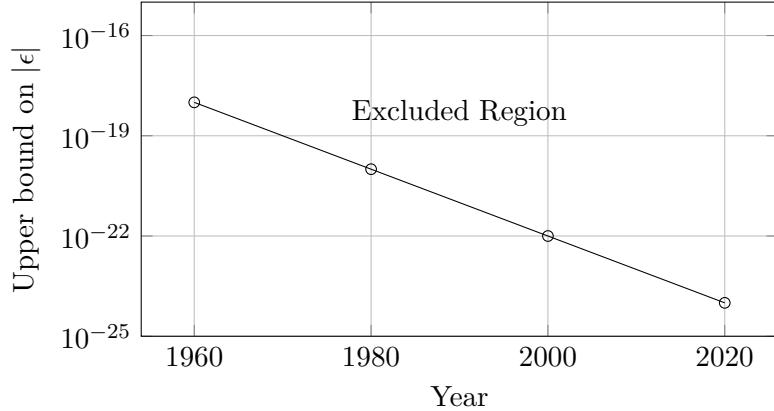


Figure 2: Schematic exclusion trend for the 6DT coupling parameter ϵ based on increasingly sensitive Lorentz-violation tests (Hughes–Drever and successors). Each point corresponds to an illustrative upper bound; the shaded region above the curve is excluded. The indicated values are representative, not tied to a specific dataset, but encapsulate the idea that $|\epsilon|$ must be extremely small to evade detection.

The trend emphasizes that, in any realistic implementation of 6DT, the coupling must be tiny in terrestrial environments: 6DT is essentially *screened* at low energies and weak fields, emerging only as a minuscule correction to SR.

6 Discussion and Outlook

We have developed a self-contained kinematic analysis of the Six-Dimensional Directional Time (6DT) framework, focusing on:

- the geometric structure of the 6D manifold with metric (3);
- the constraint algebra (5)–(7) that removes ghost degrees of freedom and ensures a single physical proper time;
- the derivation of an effective, direction-dependent speed of light (14);
- the implications of this anisotropy for Einstein’s train simultaneity thought experiment, yielding the additional time shift (20);

- the orientation dependence of light-clock tick rates and its tension with local Lorentz invariance;
- the qualitative mapping of 6DT anisotropies to SME coefficients [3] and the resulting constraints on ϵ from Hughes–Drever-type experiments [5].

The overarching message is that 6DT provides a concrete realization of a spacetime with additional time dimensions that remain hidden from direct observation due to gauge constraints, but leave behind tiny Lorentz-violating signatures encoded in the parameter ϵK_{ij} . These signatures affect fundamental notions such as simultaneity and isotropy of clock rates, but are heavily suppressed by the smallness of ϵ and the weakness of tidal fields in everyday environments.

From an experimental standpoint, the agreement of SR and local Lorentz invariance with precision tests demands that $|\epsilon|$ be extremely small in laboratory settings, plausibly at or below 10^{-20} . This effectively confines 6DT to a role as a highly subleading correction to ordinary kinematics, at least at energies and fields accessible today.

From a theoretical perspective, 6DT sits at the intersection of higher-dimensional models and Lorentz-violation frameworks:

- It shares with Two-Time Physics [1] the idea that multiple time dimensions can be rendered physical via constraints and gauge symmetries.
- It naturally dovetails with the SME approach [3], providing a geometric origin for certain Lorentz-violating coefficients in terms of K_{ij} .

Future directions include:

- (a) developing the full field-theoretic implementation of 6DT (beyond point-particle kinematics) and coupling to Standard Model fields;
- (b) deriving explicit SME coefficients in terms of 6DT parameters and tidal tensors, and comparing systematically with existing data tables;
- (c) exploring strong-field or cosmological regimes where K_{ij} might be large (e.g., near compact objects), potentially amplifying 6DT signatures;
- (d) investigating whether dynamical evolution of \vec{t} can play a role in early-universe cosmology or in the structure of quantum gravity.

Even if nature ultimately favors conventional $1 + 3$ -dimensional spacetime without extra time directions, the 6DT framework serves as a valuable testbed for the robustness of Lorentz symmetry and the interpretational foundations of time in physics.

References

- [1] Itzhak Bars. “Two-Time Physics”. In: *Communications in Mathematical Physics* 215.2 (2000), pp. 283–299.
- [2] Blake Burns. “Developing 6DT and Directional Time Theory: A Framework and Notes”. In: *Dragonex Technologies Research Notes* (2025). Uploaded manuscript.
- [3] Don Colladay and V. Alan Kostelecký. “Lorentz-violating Extension of the Standard Model”. In: *Physical Review D* 58 (1998), p. 116002.
- [4] Albert Einstein. “Zur Elektrodynamik bewegter Körper”. In: *Annalen der Physik* 322.10 (1905), pp. 891–921.
- [5] V. W. Hughes, H. G. Robinson, and V. Beltran-Lopez. “Upper Limit for the Anisotropy of Inertial Mass from Nuclear Resonance Experiments”. In: *Physical Review Letters* 4 (1960), pp. 342–344.