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Abstract

We present a theoretical and phenomenological study of the Siz-Dimensional Directional
Time (6DT) framework applied to foundational Einsteinian thought experiments. The 6DT
model treats time as a three-component vector and posits a six-dimensional manifold M6 =
R? x R3 equipped with a metric ansatz depending on a small coupling parameter ¢ and a
Newtonian tidal tensor K;;. We analyze the null structure and constraint algebra of this
geometry and then map its predictions onto Einstein’s “Train” and “Light Clock” thought
experiments. We show that 6DT generically induces a background-dependent anisotropy in
light propagation, so that simultaneity and time dilation become contingent on the local mass
distribution. We further exhibit how these deviations can be parameterized in the language
of the Lorentz-violating Standard-Model Extension (SME) and how Hughes—Drever-type
experiments constrain the 6DT coupling to be extremely small, with representative bounds

on the order of |¢] < 1072°.
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1 Introduction

Special Relativity (SR) is founded on two postulates: the principle of relativity and the invariance
of the speed of light in vacuum, ¢, for all inertial observers [4]. Together, these imply the familiar
Minkowski spacetime structure, with one time and three spatial dimensions, and guarantee
isotropy of local inertial physics. Numerous experiments have confirmed these postulates to
extremely high precision, placing stringent bounds on any Lorentz-violating effects.

At the same time, attempts to unify gravity and quantum field theory often contemplate
extended spacetime structures. A notable example is Two-Time Physics (2T) [1], in which a
2 + 4 dimensional spacetime (two timelike and four spacelike dimensions) is equipped with a
local gauge symmetry that removes negative-norm states and recovers ordinary 1 4 3 dimen-
sional physics as effective “shadows” of a higher-dimensional theory. In this type of framework,
extra time dimensions are not directly observed because gauge constraints eliminate would-be
pathological degrees of freedom.

The Siz-Dimensional Directional Time (6DT) framework proposed by Burns [2] takes a
related but distinct approach: it promotes the single time coordinate of SR to a three-component

vector. The resulting spacetime is modeled as

MO =R3 x R3, (1)

with coordinates X4 = {t!, 27} where 4,5 € {1,2,3} and f is an internal time vector. Physical
viability is maintained via constraint equations that enforce a single effective proper time and
remove negative-norm ghost states, in analogy with 2T-physics and constrained Hamiltonian
systems.

A phenomenological ingredient of 6DT is a metric ansatz in which a small coupling € mediates
an interaction between the orientation of the time vector and the local spatial geometry via a
tidal tensor Kjj(x), taken to be the Hessian of the Newtonian gravitational potential. This
construction breaks local Lorentz invariance in a controlled and environment-dependent way,
suggesting that the presence of matter and gravitational gradients might induce tiny directional
modifications to the propagation of light and the ticking of clocks.

In this paper we:

e present the 6DT metric ansatz and constraint algebra;



o analyze null geodesics and derive an effective direction-dependent speed of light;

« revisit Einstein’s “Train” and “Light Clock” thought experiments within 6DT and exhibit

the induced anisotropies in simultaneity and time dilation;
« map the 6DT corrections onto Standard-Model Extension (SME) coefficients [3];

o use Hughes—Drever-style experimental constraints [5] to obtain bounds on the coupling

€.

Throughout, we work at leading order in the small dimensionless parameter € and treat K;;
as a prescribed background field associated with the local mass distribution. We set ¢ as the

usual vacuum light speed in the € — 0 limit and keep factors of ¢ explicit where helpful.

2 Architecture of the 6DT Framework

2.1 Six-Dimensional Coordinates and Metric Ansatz

In 6DT, spacetime points are labeled by

XA = (462,63, 21, 2%, 2, A=1,...,6, (2)

where t = (t!,2,#3) € R} and & = (2!, 22, 2%) € R3. The metric ansatz employed in [2] is

—e?0;;  eKip(z
Gap(X) = Rl (3)
éKkj($) 5kj

where:

0i; is the 3 x 3 identity matrix;

e is a constant with dimensions of velocity; one may set e = ¢ so that the ¢ — 0 limit

reduces to Minkowski-like kinematics;

€ < 1 is a dimensionless coupling that controls the strength of the new 6DT effect;

o Kjj(x) is a symmetric tidal tensor, taken phenomenologically as

020 (%)

K0 = Gigur



with ® the Newtonian gravitational potential, so that Kj;; encodes spatial curvature of

the potential (tidal forces).

In the block notation of (3), the time-time block GZ(.;) = —e24;; provides three negative
directions, and the space—space block Ggf) = d;; provides three positive directions. Thus, to
zeroth order in €, the signature is (—, —, —, 4+, +, +).

The off-diagonal blocks proportional to eK;; couple the orientation of t to the spatial direction
of propagation. For ¢ = 0, the metric is block diagonal and the extra time directions decouple.
Nonzero ¢ introduces small Lorentz-violating corrections that depend on the local gravitational

environment.

2.2 Constraint Algebra and Ghost Removal

The doubled time sector generically introduces negative-norm states and potential violations
of unitarity, as is familiar from naive multi-time theories. To ensure physical viability, 6DT
supplements the metric ansatz with first-class constraints on phase space [2], analogous in spirit
to the Sp(2,R) gauge structure of Two-Time Physics [1].

Let (X4, P4) denote canonical coordinates and momenta. The key constraints for a point

particle of mass m are:

Mass-shell constraint ®g:

1
(X, P) = 5 G PPy +m? ~ 0, (5)
where P, are the momenta conjugate to t'. To lowest order in e, GS) = —62(51']‘, SO
2 2. 4
e — mec
o~ ——5 8 P Py + m’?~0 = |P|*= - (6)

This restricts the three time-momenta to lie on a two-dimensional mass shell in the R} momen-

tum space, thereby introducing only one independent energy-like degree of freedom.

SO(3); gauge generators J;;:

JZ] = tiPtj - t]Ptl ~ 07 Z7j = 17273' (7)

These generate rotations in the internal time space, forming an so(3) algebra. They identify



physical states related by
t— R, P,—RP, ReSO3), (8)

i.e., the direction of t is unobservable in the € — 0 limit; only gauge-invariant quantities survive.

Taken together, ®; and the three independent generators J;; (with associated gauge-fixing
conditions) remove the would-be ghost degrees of freedom, leaving a single effective proper time
along each worldline. More precisely, the six configuration variables (¢, 2°) and six momenta are
reduced by 4 first-class constraints and 4 gauge choices, leaving 4 physical phase-space degrees
of freedom, corresponding to one time and three spatial coordinates, as in SR.

In the full theory with nonzero €, these constraints ensure that the extra time directions are
hidden from direct observation, yet their orientation can subtly influence kinematics through

the eK;; coupling.

3 DModified Light Propagation and the Train Experiment

3.1 Null Condition and Direction-Dependent Light Speed

Light rays follow null curves of the metric (3), defined by
0 = GapdXAdXP = —€?§;;dt'dt? + 2¢ K;(F) dt'da? + 55 da'da?. (9)

To obtain an effective speed of light as seen by a local observer, one may fix a gauge in which a

unit internal time-direction 7¢ is associated with the observer’s proper time, so that
dt' = 7' dt, (10)
and consider propagation along a spatial unit vector 7/,

dx’l = vl dt, (11)



for some coordinate speed v to be determined. Inserting into (9), keeping only linear terms in

€, and setting e = ¢ for convenience, we find
0 = —c?0;; 7' # dt* + 2¢ K7 ndv dt* + v?0;n' 0! di?, (12)

or

—® + 2ev Kij#'id + 0% =0, (13)

since 72 = A2 = 1.

Solving for v and expanding to first order in € yields
v = cei(R) = ¢ [1 — € Kij(Z) %iﬁj} . (14)

Thus, in 6DT the local speed of light depends on the direction of propagation n and on the
orientation of the internal time vector 7 relative to the tidal tensor Kj;. This constitutes a
violation of local Lorentz invariance: isotropy of ¢ is broken by the presence of the background

field K”

3.2 Einstein’s Train Experiment in 6DT

Consider Einstein’s train thought experiment [4]. A train of proper length L moves along the
x-axis, and lightning strikes simultaneously at the front and back in the ground frame. In SR, an
observer in the train’s midpoint judges the two strikes as non-simultaneous in the train frame,
due to the invariance of ¢ and the train’s motion.

In the 6DT framework, we additionally allow for a nonzero tidal tensor component K, along

the track. Assume, for simplicity, that:

e the relevant time-direction 7 has a nonzero projection along = so that Kij%iﬁj ~ K,, for

propagation along +z;
» K;; is approximately constant over the spatial region of interest.

Then for light propagating in the +x and —z directions we have from (14)

Cforward ~ C (1 - EKxx)a (15)

Cbackward ~ C (1 + €Kxa:)7 (16)



so that

Chackward — Cforward ~ 2 er (17)
C

Let the lightning strikes at the ends of the train be separated by coordinate distance L in the
ground frame and occur simultaneously at time ty. Light from the rear strike travels forward
a distance L/2 to reach the midpoint; light from the front travels backward the same distance.

Their travel times in the ground frame are

L/2 L

Lrear—mid ~ c / q ~ % (1 + 6KJZ$)7 (18)
orwar
L/2 L

Uront—mid ~ 4 ~ oo (1 - EK&U&U) (19)

Chackward 2c

The 6DT-induced difference in arrival times (even before accounting for SR kinematics of the

moving train frame) is therefore

AtGDT = trear—mid — tfront—mid ~ ; EKx:L“ (20)

This represents a new environment-dependent contribution to the non-simultaneity perceived
by the midpoint observer. In SR, simultaneity is purely relative to inertial motion. In 6DT,
simultaneity also depends on the local gravitational tidal field and the orientation of the time
vector: even observers at rest in the same frame but in different gravitational environments may
disagree about simultaneity of distant events. For typical terrestrial values of K., and very

small ¢, the effect is exceedingly tiny, but conceptually significant.

4 Light Clocks and Orientation-Dependent Time Dilation

4.1 Conceptual Picture

Einstein’s light clock consists of two mirrors between which a light pulse bounces; its tick period
is T'=2L/c in SR. A fundamental prediction of Lorentz invariance is that, in a given inertial
frame, the ticking rate of a light clock does not depend on the orientation of the apparatus:
clocks aligned along z or y tick at the same rate, up to conventional time dilation factors when
viewed from a moving frame.

In 6DT, because ce(n) depends on direction, one generally expects a slight orientation

dependence in the tick period once K;; # 0.
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Figure 1: Schematic anisotropy in the 6DT framework. Two identical light clocks are oriented
along = and y. If the tidal tensor K;; distinguishes these directions, the effective light speeds c,
and ¢, differ slightly, inducing orientation-dependent tick periods.

Figure 1 illustrates the idea: one light clock is oriented vertically (along y), the other hor-
izontally (along z). Suppose the dominant tidal tensor components in the lab frame are K,

and K. Then, using the effective speed (14), one expects

cr ~c(l—eKyy), (21)

ey ~c(l—eKyy), (22)

to leading order, where the precise combination of components depends on the alignment of 7

relative to the laboratory axes. The tick periods for the two clocks (round trip) are

2L 2L

T, ~—~—(1+eK,), (23)
Co c
2L 2L

Ty~ —~ —(1+eKy), (24)
¢y c

so that the fractional difference in tick rates is

2
2
4

|
gw
~

Il

2L
~ (25)
Unless K, = Ky, or € = 0, identical clocks oriented differently would tick at slightly different
rates. This is a direct violation of local Lorentz invariance and of the principle that “all inertial
frames are equivalent” at small scales.

In a realistic laboratory on Earth’s surface, K;; can be estimated from the gravitational
potential of the Earth; typical magnitudes are of order 107¢s~2. With e constrained to be

extremely small, the effect is far below current experimental sensitivity, as we discuss below.



4.2 Relation to Conventional Time Dilation

In SR, a moving light clock undergoes time dilation with factor v = (1 — v?/c?)~Y/2: its tick
period in the lab frame becomes T = vT'. An essential feature of SR is that any physical process
(atomic transitions, mechanical clocks, light clocks, ...) experiences the same time dilation factor,
provided Lorentz symmetry holds.

In 6DT, there is no obstruction to defining the usual Lorentz-factor time dilation when con-
sidering boosts in the spatial subspace. To leading order, the SR relation can remain intact, but
the rest-frame tick period may acquire an orientation-dependent correction. Thus, in principle,
two light clocks at rest but oriented differently could show different time dilation factors when
set in motion, simply because their proper periods differ slightly in the presence of K;;. This
effect is subtle and would be best analyzed using the full SME machinery for boosted frames [3],
but the basic picture is clear: any orientation-dependent modification of the rest-frame period

is a Lorentz-violating signature.

5 Mapping to the SME and Experimental Constraints

5.1 6DT and SME Photon-Sector Coefficients

B>

The Standard-Model Extension (SME) [3] is an effective field theory that parametrizes generic
Lorentz and CPT violation by adding all possible symmetry-breaking terms to the Standard
Model and General Relativity. In the photon sector, Lorentz violation can be encoded in tensor
coefficients that modify the Maxwell Lagrangian, leading to direction-dependent propagation
speeds for electromagnetic waves.

At the level of phenomenology, for non-birefringent photon-sector effects, one often parame-

(SME)

terizes Lorentz violation via a symmetric tensor c; y which characterizes small anisotropies in
light propagation. Comparing the effective speed in 6DT, Eq. (14), with such SME parametriza-
tions suggests the correspondence
SME 6DT
cz(»j )~ eKi(j ), (26)
up to model-dependent numerical factors. In other words, the 6DT tidal tensor Kj; plays the

role of a background field that induces SME-like Lorentz-violating coefficients proportional to

the coupling e.
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This identification allows us to reuse existing SME bounds from a variety of experiments—
including cavity tests, clock-comparison experiments, and high-precision spectroscopy—to con-

strain the magnitude of eKj;.

5.2 Hughes—Drever-Type Bounds

The classic Hughes—Drever experiment [5] tested the isotropy of inertial mass by measuring
nuclear resonance frequencies as the apparatus was rotated relative to distant stars. The null
result implies that any direction dependence of nuclear energy levels is extremely small, typically
quoted as a bound 6E/E < 10722 for anisotropic contributions.

In a 6DT-inspired interpretation, such a bound can be translated into a limit on combinations

of the form

(SME)
1] ’

EKz'j ~ C (27)

since anisotropic corrections to energy levels or effective inertial masses are directly controlled by
Lorentz-violating coefficients in the matter and photon sectors. The precise mapping depends
on the detailed coupling of 6DT to matter fields, which lies beyond the scope of this purely

kinematic analysis. Nevertheless, a representative order-of-magnitude bound can be written as

Jex
el < P 28
el < Koo (28)

where Jexp is the experimental upper limit on anisotropy (e.g., 10722) and |Kjj|jap is a char-

acteristic magnitude of the terrestrial tidal tensor. If we take |Kjj|jan ~ 1079572, we obtain a
sample bound

le| < 1071, (29)

More modern experiments, including high-quality optical cavity tests and atomic clock com-
parisons, have probed Lorentz violation to even higher precision, often improving constraints
on SME coefficients by several orders of magnitude. Interpreted in the 6DT language, such
experiments can push the effective bound on e down to O(1072") or below, depending on the

details of the coupling and the relevant components of Kj;.
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5.3 Illustrative Exclusion Trend

Without committing to specific experimental datasets, one can schematically illustrate how
bounds on |e| tighten over time as sensitivity to anisotropy improves. In Figure 2, we show a
representative trend where each point marks a notional upper bound from increasingly precise

Lorentz-violation experiments.
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Figure 2: Schematic exclusion trend for the 6DT coupling parameter ¢ based on increasingly
sensitive Lorentz-violation tests (Hughes—Drever and successors). Each point corresponds to an
illustrative upper bound; the shaded region above the curve is excluded. The indicated values
are representative, not tied to a specific dataset, but encapsulate the idea that |e|] must be
extremely small to evade detection.

The trend emphasizes that, in any realistic implementation of 6DT, the coupling must be
tiny in terrestrial environments: 6DT is essentially screened at low energies and weak fields,

emerging only as a minuscule correction to SR.

6 Discussion and Outlook

We have developed a self-contained kinematic analysis of the Six-Dimensional Directional Time

(6DT) framework, focusing on:
o the geometric structure of the 6D manifold with metric (3);

o the constraint algebra (5)—(7) that removes ghost degrees of freedom and ensures a single

physical proper time;
o the derivation of an effective, direction-dependent speed of light (14);

o the implications of this anisotropy for Einstein’s train simultaneity thought experiment,

yielding the additional time shift (20);

12



o the orientation dependence of light-clock tick rates and its tension with local Lorentz

invariance;

o the qualitative mapping of 6DT anisotropies to SME coefficients [3] and the resulting

constraints on € from Hughes—Drever-type experiments [5].

The overarching message is that 6DT provides a concrete realization of a spacetime with ad-
ditional time dimensions that remain hidden from direct observation due to gauge constraints,
but leave behind tiny Lorentz-violating signatures encoded in the parameter e/;;. These signa-
tures affect fundamental notions such as simultaneity and isotropy of clock rates, but are heavily
suppressed by the smallness of € and the weakness of tidal fields in everyday environments.

From an experimental standpoint, the agreement of SR and local Lorentz invariance with
precision tests demands that |e€| be extremely small in laboratory settings, plausibly at or below
10720, This effectively confines 6DT to a role as a highly subleading correction to ordinary
kinematics, at least at energies and fields accessible today.

From a theoretical perspective, 6DT sits at the intersection of higher-dimensional models

and Lorentz-violation frameworks:

o It shares with Two-Time Physics [1] the idea that multiple time dimensions can be

rendered physical via constraints and gauge symmetries.

o It naturally dovetails with the SME approach [3], providing a geometric origin for certain

Lorentz-violating coeflicients in terms of Kj;.
Future directions include:

(a) developing the full field-theoretic implementation of 6DT (beyond point-particle kine-

matics) and coupling to Standard Model fields;

(b) deriving explicit SME coefficients in terms of 6DT parameters and tidal tensors, and

comparing systematically with existing data tables;

(c) exploring strong-field or cosmological regimes where K;; might be large (e.g., near com-

pact objects), potentially amplifying 6DT signatures;

(d) investigating whether dynamical evolution of { can play a role in early-universe cosmology

or in the structure of quantum gravity.
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Even if nature ultimately favors conventional 1 + 3-dimensional spacetime without extra
time directions, the 6DT framework serves as a valuable testbed for the robustness of Lorentz

symmetry and the interpretational foundations of time in physics.
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