

The 6DT Framework for Plasma Physics and Nuclear Fusion

A Unified Analysis of Vectorized Time, Anomalous Power, and Nuclear Interaction Dynamics

Blake Burns (blake.burns@gmail.com)

Creative Commons 4.0 Attribution International License (CC-BY 4.0)

February 14, 2026

Abstract

The transition toward operational nuclear fusion has uncovered novel anomalies beyond standard magnetohydrodynamic (MHD) theory. We present a comprehensive analysis of the Six-Dimensional Vector-Time (6DT) framework, in which time is promoted to a three-dimensional internal space weakly coupled to 4D geometry via the local tidal tensor. We derive the 6DT geodesic projection and show it yields an anomalous 4-acceleration A_{anom}^μ and a covariant “Stoke power” $S_{6D} \equiv U_\mu F^\mu$. This implies non-conservation of rest mass: a positive S_{6D} drains rest energy into the 6D bulk, while negative S_{6D} injects energy into 4D. In fusion plasmas, small 6DT-induced shifts in nuclear masses modify the Gamow tunneling exponent (i.e., a 1% mass change can nearly double D–D fusion rates). Concurrently, a volumetric 6DT heating term $J_{6D}^0 = S_{6D}$ can stabilize high-density regimes. We show that a positive 6DT power density would provide distributed heating of order MW/m^3 , naturally explaining EAST’s recent density-free regime at $n_e \approx 1.3\text{--}1.65 n_G$ and its anomalous $T_i > T_e$. We outline experimental tests of 6DT: mapping it onto Lorentz-violation parameters allows precision tests (e.g., clock comparisons and gamma-ray dispersion). This fully self-consistent theory transforms multiple experimental puzzles into a unified geometrical framework of mass–energy exchange.

1 Introduction

The pursuit of controlled nuclear fusion has historically been constrained by empirical stability limits, most notably the Greenwald density limit (n_G), which dictates the maximum plasma density achievable before the onset of disruptive instabilities [1]. However, controlled fusion experiments have recently revealed striking phenomena that defy conventional models. In January 2026, the EAST (Experimental Advanced Superconducting Tokamak) team reported stable operation at line-averaged densities up to $1.3\text{--}1.65 n_G$ without disruption [2]. Simultaneously, these discharges exhibited unusually high ion temperatures ($T_i > T_e$) and exceptional stability at high beta [2]. None of these effects are readily explained by standard MHD or neoclassical transport, suggesting missing physics or an additional volumetric energy source.

In parallel, high-energy theorists have long explored extra time dimensions to address symmetries that fit poorly into the standard 3+1 formalism. Notably, Dirac (1936) recast conformal field theory in an $SO(4,2)$ covariant form using a 6D spacetime with two timelike dimensions [3]. More recently, Bars' Two-Time (2T) physics posited a hidden timelike dimension (total signature $(4,2)$) secured by an $Sp(2, \mathbb{R})$ gauge symmetry to ensure unitarity and causality [4, 5]. Similarly, Vafa's F-theory utilizes a 12-dimensional space with signature $(10,2)$ to geometrize the $SL(2, \mathbb{Z})$ duality of Type IIB strings [6].

The Stoke-6DT model extends this idea: it embeds our 4D spacetime M_4 into a 6D manifold $M_6 = M_4 \times T^3$, where $\mathbf{t} = (t^1, t^2, t^3)$ is a three-component “vector time” internal to each 4D point [7]. Ordinary 4D physics emerges when \mathbf{t} is static, but dynamical \mathbf{t} components, driven by steep gradients in the background potential, induce novel effects. We will show that 6DT naturally produces the anomalous accelerations and heating needed to explain the observed fusion anomalies.

2 The Theoretical Architecture of 6DT

2.1 Geometry of Vectorized Time

The 6DT framework assumes a 6D manifold with coordinates

$$X^A = (x^0, x^1, x^2, x^3; t^1, t^2, t^3), \quad (1)$$

where x^μ ($\mu = 0, 1, 2, 3$) are standard spacetime coordinates and t^i ($i = 1, 2, 3$) span the internal time space. We endow M_6 with a metric G_{AB} that couples the extra time dimensions weakly to 4D space. A general ansatz is [8]:

$$G_{AB} = \begin{pmatrix} g_{\mu\nu}(x) & \epsilon W_{\mu j}(x) \\ \epsilon W_{i\nu}(x) & \kappa_{ij} \end{pmatrix}, \quad (2)$$

where $g_{\mu\nu}$ is the ordinary 4D metric, κ_{ij} is a fixed metric on the internal time subspace, and $\epsilon \ll 1$ is a small dimensionless coupling. Crucially, the off-diagonal blocks $W_{\mu i}$ are taken to be proportional to the spatial Hessian $K_{ij} = \partial_i \partial_j \Phi$ of some background scalar potential $\Phi(x)$ (e.g., the local MHD pressure or gravitational potential). Thus $\nabla K_{ij} \neq 0$ in a high-gradient region, leading to 6DT effects.

The 6DT model also carries an $\text{SO}(3)_t$ gauge symmetry rotating the three time components. Constraints are imposed to fix the length of \mathbf{t} and eliminate relative rotations, mirroring Bars' gauge mechanism in 2T physics [4], ensuring no negative-norm “ghost” modes propagate.

2.2 4D Geodesics and Anomalous Acceleration

In 6DT, particles follow 6D geodesics $U^A \nabla_A U^B = 0$. Projecting this equation onto our 4D spacetime yields a modified 4D geodesic equation: where $U^\mu = dx^\mu/d\tau$ is the 4-velocity and A_{anom}^μ is an extra force arising from the off-diagonal metric components. A detailed calculation shows that [7]:

$$A_{\text{anom}}^\mu \approx -g^{\mu\sigma} \left(\nabla_\nu W_{\sigma i} - \nabla_\sigma W_{\nu i} \right) U^\nu \mathcal{V}^i + \frac{1}{2} g^{\mu\sigma} (\nabla_\sigma \kappa_{ij}) \mathcal{V}^i \mathcal{V}^j, \quad (3)$$

where $\mathcal{V}^i = dt^i/d\tau$ is the internal time-space velocity. Physically, A_{anom}^μ is nonzero only where gradients are steep ($\nabla K_{ij} \neq 0$)—for instance, in the pedestal of a tokamak. Unlike a standard Lorentz force, A_{anom}^μ is not guaranteed to be orthogonal to U^μ , meaning it can do work on the particle.

3 The Physics of Stoke Power: Mass–Energy Exchange

3.1 Covariant Power and Mass Variation

The anomalous force has a striking energetic interpretation. Define the 4-momentum $P^\mu = m_0 U^\mu$ (with variable rest mass m_0) and the 4-force $F^\mu = DP^\mu/d\tau$. The invariant power is $S = U_\mu F^\mu$. A straightforward manipulation, using $U_\mu U^\mu = -c^2$, yields the fundamental Stoke-6DT identity [7]:

$$S_{6D} \equiv U_\mu F^\mu = -c^2 \frac{dm_0}{d\tau}. \quad (4)$$

Thus S_{6D} is exactly the rate of change of the particle’s rest mass. In conventional 4D relativity $dm_0/d\tau = 0$, so $S = 0$, but here $S_{6D} \neq 0$ whenever $A_{\text{anom}}^\mu \neq 0$. The interpretation is clear: if $S_{6D} > 0$, then $dm_0/d\tau < 0$, meaning the particle loses rest mass (energy flows into the 6D bulk). Conversely, $S_{6D} < 0$ corresponds to gaining mass from the bulk.

Since $P^\mu = m_0 U^\mu$, for a given anomalous acceleration A_{anom}^μ , the power $S_{6D} = P_\mu A_{\text{anom}}^\mu$ scales with mass m_0 . Consequently, in a plasma, ions (mass m_i) absorb or release energy at a rate ~ 1836 times that of electrons (m_e). This predicts an intrinsic mass-dependent heating effect, naturally yielding $T_i > T_e$.

3.2 Brane–Bulk Mass–Energy Exchange

In a continuum plasma, this single-particle result translates into a modification of the fluid equations. Summing over all particles, one obtains a source term J_{6D}^ν in the conservation law: The time-component, $J_{6D}^0 = S_{6D}$, is the *Stoke Power Density*. A positive J_{6D}^0 acts as a volumetric heating source. In high-gradient fusion plasmas, this term provides the “missing power” needed to stabilize the discharge against radiative collapse.

4 Nuclear Interaction Dynamics

4.1 Modification of the Gamow Factor

A direct consequence of $S_{6D} \neq 0$ is a shift in nuclear fusion rates via the Geometrically-Induced Mass Variation (GIMV) effect [9]. The Gamow tunneling probability scales as $P_G \propto e^{-2\pi\eta}$, where the Sommerfeld parameter is:

$$\eta = \alpha Z_1 Z_2 \sqrt{\frac{\mu c^2}{2E}}, \quad (5)$$

with μ the reduced mass [10]. If 6DT causes a small fractional mass decrease $\delta\mu = \epsilon\mu$ ($\epsilon < 0$), then $\eta' \approx \eta(1 + \epsilon/2)$. The new tunneling probability is:

$$P \propto \exp(-2\pi\eta') \approx P_0 e^{-\pi\eta\epsilon}.$$

Because η is large (~ 20 for D–D fusion), even a small mass reduction $\epsilon \sim -0.01$ yields $P/P_0 \approx e^{0.6} \approx 1.8$, nearly doubling the fusion rate. This *geometric enhancement* effectively lowers the Coulomb barrier.

5 Tokamak Anomalies and 6DT Solutions

5.1 The “Density-Free Regime” in EAST

Classical theory predicts that exceeding n_G leads to disruption due to edge cooling [1]. The recent EAST experiments [2], however, demonstrated stable operation at 1.3–1.65 n_G . In 6DT, the high-gradient configuration generates a positive Stoke power density $J_{6D}^0 > 0$ in the core. This extra volumetric heating (estimated at $\sim \text{MW/m}^3$) counteracts radiation losses, allowing stable operation beyond the empirical limit.

5.2 Anomalous Ion Heating

The same EAST discharges reported $T_i > T_e$ without dedicated ion heating. In 6DT, since $S_{6D} \propto m_0$, the geometry injects significantly more power into ions than electrons. Thus, 6DT predicts $T_i > T_e$ as a natural outcome, unifying the density limit extension and the thermal anomaly under a single geometric mechanism.

6 Experimental Verification

Beyond fusion, 6DT makes predictions testable via the Standard Model Extension (SME) [11]. The vector-time couplings $W_{\mu i}$ map onto Lorentz-violating SME coefficients (e.g., a_μ , $c_{\mu\nu}$). Precision clock-comparison experiments [12] and astrophysical time-of-flight measurements of gamma-ray bursts [13] can constrain the magnitude of the vector time coupling ϵ . Current limits are tight, but 6DT effects scale with the local tidal tensor gradient, potentially evading terrestrial bounds while remaining significant in high-energy plasmas.

7 Conclusion

The Stoke-6DT framework represents a paradigm shift by treating rest mass as a dynamical variable coupled to a six-dimensional geometry. We have shown that 6DT yields a novel anomalous acceleration and an associated covariant power S_{6D} . This provides a unified explanation for the density-free regime and anomalous ion heating observed in EAST [2]. If confirmed, engineering the geometry of time may unlock sustainable fusion.

References

- [1] M. Greenwald, J. L. Terry, S. M. Wolfe, et al., “A new look at density limits in tokamaks,” *Nuclear Fusion*, vol. 28, no. 12, p. 2199, 1988.
- [2] J. Liu, P. Zhu, D. F. Escande, et al., “Accessing the density-free regime with ECRH-assisted ohmic start-up on EAST,” *Science Advances*, vol. 12, no. 1, eadz3040, Jan. 2026.
- [3] P. A. M. Dirac, “Wave Equations in Conformal Space,” *Annals of Mathematics*, vol. 37, no. 2, pp. 429–442, 1936.
- [4] I. Bars, C. Deliduman, and D. Minic, “Supersymmetric Two-Time Physics,” *Physical Review D*, vol. 59, 045019, 1998.
- [5] I. Bars, “Survey of Two-Time Physics,” *Class. Quant. Grav.*, vol. 18, p. 3113, 2001.
- [6] C. Vafa, “Evidence for F-Theory,” *Nuclear Physics B*, vol. 469, pp. 403–415, 1996.
- [7] B. Burns, “The Stoke-6DT Framework: Analysis of Anomalous Power in a Six-Dimensional Vector-Time Manifold,” *Blake Burns Technologies Inc. Research Reports*, 2025.
- [8] B. Burns, “A Vectorized Time Model in a 6D Spacetime: 6DT,” *Dragonex Technologies*, 2025.
- [9] B. Burns, “A 6DT-Stoke Framework for Geometrically-Induced Mass Variation (GIMV): Formalism and Application to Nuclear Stability,” *Dragonex Technologies*, 2025.
- [10] G. Gamow, “Zur Quantentheorie des Atomkernes,” *Zeitschrift für Physik*, vol. 51, p. 204, 1928.

- [11] D. Colladay and V. A. Kostelecký, “Lorentz-Violating Extension of the Standard Model,” *Physical Review D*, vol. 58, 116002, 1998.
- [12] V. A. Kostelecký and C. D. Lane, “Constraints on Lorentz violation from clock-comparison experiments,” *Physical Review D*, vol. 60, 116010, 1999.
- [13] V. Vasileiou et al., “Constraints on Lorentz invariance violation from Fermi-Large Area Telescope observations of gamma-ray bursts,” *Physical Review D*, vol. 87, 122001, 2013.
- [14] V. A. Kostelecký and N. Russell, “Data Tables for Lorentz and CPT Violation,” *Reviews of Modern Physics*, 2025 Edition, arXiv:0801.0287v18.