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Abstract.

This report proposes a novel experiment designed to test the unique kinematic predictions of

the six-dimensional spacetime (6DT) framework. The 6DT model posits a background space-

time anisotropy, parameterized by a tensor field Kij(x) sourced by local gravitational potentials,

which can be mapped to the Standard-Model Extension (SME). While existing Michelson-Morley

and Hughes-Drever experiments place stringent constraints on the static components of such an

anisotropy, they do not directly probe the model’s predictions for observers in relativistic motion.

We derive a new observable: a boost-dependent modification to the one-way speed of light, which

manifests as a unique coupling between sidereal and annual modulations in a terrestrial laboratory.

We propose a ground-based experiment using a long-baseline, phase-stabilized link between two

optical atomic clocks to measure this effect. By leveraging Earth’s orbital motion as a relativistic

”boost,” this experiment would provide a direct test of the 6DT model’s modified Lorentz transfor-

mations, analogous to Einstein’s foundational thought experiments. We present a detailed sensitivity

analysis, demonstrating that this approach can either discover or constrain the 6DT coupling param-

eter ϵ in a sector of the theory’s parameter space that is inaccessible to conventional static tests.
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1 The 6DT Framework and its Phenomenological Consequences

1.1 The 6D Metric and the Anisotropic Background Field

The 6DT framework is a speculative model of spacetime built upon a six-dimensional manifold.[1]

The coordinates in this manifold are denoted by XA = {ti, xj}, where i, j ∈ {1, 2, 3}, corresponding

to three time-like and three space-like dimensions. The geometry of this spacetime is described by

a metric tensor GAB with a signature of (−,−,−,+,+,+). For phenomenological applications, the

model employs a specific metric ansatz given in block-matrix form [1]:

GAB(X) =

 −c2δij ϵKik(x)

ϵKkj(x) δkj

 (1)

In this expression, the purely spatial block is Euclidean (δkj), and the purely temporal block is also

Euclidean but with a negative sign (−c2δij). The crucial feature of this metric is the off-diagonal block,

ϵKij(x), which couples the space and time sectors. This coupling is governed by a small, dimensionless

parameter ϵ ≪ 1 and a symmetric spatial tensor Kij(x) that depends only on the spatial coordinates.[1]

The central phenomenological object of the model is this spatial tensor, Kij(x). The framework

posits that this tensor is not an arbitrary background field but is directly sourced by the distribution of

matter via the Hessian of the Newtonian gravitational potential, Φ(x).[1] This relationship is given by:

Kij(x) = c−2∂i∂jΦ(x) (2)

This ansatz establishes a direct and calculable link between the local gravitational environment—dominated

in the solar system by the Sun—and the predicted anisotropy of spacetime. The introduction of extra

time-like dimensions typically leads to unphysical negative-norm states, or ”ghosts,” which would vio-

late the unitarity of a quantum theory.[1] The 6DT framework addresses this fundamental problem by

proposing a local SO(3)t gauge symmetry that acts on the internal time indices. This symmetry, imple-

mented through a set of first-class constraints within a Becchi-Rouet-Stora-Tyutin (BRST) quantization

scheme, is designed to eliminate the unphysical degrees of freedom, leaving a single observable time

direction and ensuring the model’s physical consistency.[1]
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1.2 Mapping to the Standard-Model Extension (SME)

To connect the theoretical 6DT model with experimental reality, its predictions must be translated into

an operational framework. The Standard-Model Extension (SME) is a comprehensive effective field

theory that parameterizes all possible forms of Lorentz and CPT violation in the Standard Model and

General Relativity.[2, 3, 4] It serves as the canonical language for analyzing and comparing the results

of high-precision tests of fundamental symmetries.

The 6DT framework provides a direct mapping from its core parameters to the coefficients of the

SME.[1] The off-diagonal metric component ϵKij(x) induces a modification to the propagation of pho-

tons that, at leading order, corresponds to the CPT-even, non-birefringent coefficients of the minimal

SME’s photon sector. These coefficients are often denoted in the literature as (κ̃e−)jk.[5] The explicit

mapping is given by:

c
(eff)
ij (x) ≃ ϵKij(x) (3)

where c
(eff)
ij represents the effective SME coefficients. This relationship is the crucial bridge between

theory and experiment. However, it also reveals a profound structural feature of the 6DT model. A

general SME analysis involves fitting experimental data to numerous independent coefficients—for in-

stance, the nine nonbirefringent terms in the minimal photon sector.[5] In stark contrast, the 6DT model

does not predict arbitrary or independent coefficients. Because Kij is derived from the Hessian of a

single scalar potential Φ, all the resulting effective SME coefficients are rigidly correlated. They are all

governed by the single fundamental parameter ϵ and must exhibit the specific spatial structure of a tidal

field. This inherent structure makes the 6DT model far more constrained, and therefore more readily

falsifiable, than a generic Lorentz-violating theory. An experiment capable of measuring multiple com-

ponents of the anisotropy tensor could test not only for the presence of an effect but also for the specific

pattern of correlations predicted by the 6DT model, providing a powerful test that goes beyond merely

setting an upper limit on ϵ.

Newtonian
Potential Φ(x)

6DT Anisotropy
Tensor Kij(x)

Effective SME Co-
efficients c

(eff)
ij (x)

Hessian

Kij = c−2∂i∂jΦ

Mapping

c
(eff)
ij ≃ ϵKij

Figure 1: Conceptual flow from the gravitational potential to observable SME coefficients in the 6DT
framework. The model’s predictiveness stems from the fact that the entire tensor of SME coefficients is
determined by a single scalar potential Φ(x) and one coupling constant ϵ.
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1.3 The Explicit Form of the Anisotropic Field in the Solar System

To design a concrete experiment, the abstract theory must be applied to our specific location in the

universe. Within the solar system, the dominant source of the Newtonian potential is the Sun. Using the

monopole approximation for the solar potential, Φ(r) = −GM⊙/r, where r is the distance from the

Sun, the predicted anisotropy tensor Kij(x) can be calculated explicitly. The second partial derivatives

of the potential yield the familiar form of a tidal tensor:

Kij(x) =
GM⊙
c2r3

(3r̂ir̂j − δij) (4)

where r̂ is the unit vector pointing from the Sun to the location of the experiment. At Earth’s orbit

(a distance of r ≈ 1 AU), the magnitude of the components of this tensor can be calculated. The

dimensionless quantity GM⊙/(c
2r) is approximately 10−8. Therefore, the components of Kij are of

the order of 10−8. This numerical value provides a concrete physical scale for the background field that

a terrestrial experiment would interact with, forming the baseline for the sensitivity calculations that

follow.

2 Relativistic Kinematics and Observables in the 6DT Framework

2.1 Light Propagation in a Static 6DT Background

The primary phenomenological consequence of the 6DT metric is a modification to the propagation of

light. The trajectory of a light ray is a null geodesic, defined by the condition that the spacetime interval

ds2 is zero. For the 6DT metric, this condition is:

ds2 = GABdX
AdXB = −c2δijdt

idtj + 2ϵKij(x)dt
idxj + δijdx

idxj = 0 (5)

By assuming a single effective time coordinate t and solving for the coordinate velocity of light, v =

|d⃗x/dt|, one can derive the one-way speed of light in this background. To first order in ϵ, the speed

of light is found to be anisotropic, depending on the direction of propagation n̂ = d⃗x/|d⃗x| relative to

the local principal axes of the Kij tensor. This direction-dependent speed of light is the foundational

observable for modern Michelson-Morley (MM) experiments, which use orthogonal optical resonators

to search for a tiny difference in the round-trip speed of light as the apparatus rotates.[5, 6, 7, 8, 9] These

experiments have placed extremely stringent limits on such a static anisotropy, effectively constraining
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the product ϵ|Kij |.

2.2 The Anisotropic One-Way Light Speed for a Boosted Observer

The user’s query specifically requests an experiment analogous to Einstein’s thought experiments in-

volving observers in relativistic motion. This requires moving beyond the static case and analyzing how

an observer moving with a relativistic velocity β⃗ = v⃗/c through the fixed Kij field perceives the speed

of light. This is the theoretical core of the proposed experiment.

A full derivation of the modified Lorentz transformations in the 6DT framework is complex. How-

ever, the key observable can be derived more directly by calculating the light travel time in the moving

observer’s frame. This calculation reveals that the measured one-way speed of light, c′, for an observer

moving with velocity β⃗ contains new, velocity-dependent terms. Schematically, the measured speed of

light takes the form:

c′(n̂) ≈ c

(
1− 1

2
ϵn̂iKijn̂

j +O(ϵβ)

)
(6)

The first term inside the parenthesis, proportional to ϵKij , represents the static anisotropy detectable by

a standard MM experiment. The second term, O(ϵβ), is the novel prediction of the theory for a boosted

observer. This term depends on the geometric relationship between the direction of light propagation n̂,

the observer’s velocity β⃗, and the orientation of the background anisotropy tensor Kij . It represents a

fundamentally new kinematic effect that is inaccessible to purely static tests.

2.3 Derivation of a Measurable Observable: The Sidereal-Annual Coupling

This novel boost-dependent term gives rise to a unique and unambiguous experimental signature that

is qualitatively different from the signals sought in conventional MM and Hughes-Drever (HD) ex-

periments.[10] The key to detecting this effect lies in leveraging the natural motions of a terrestrial

laboratory.

The background anisotropy field Kij generated by the Sun is, to a good approximation, static in the

Sun-centered celestial equatorial frame (SCCEF), which is the standard inertial frame used for reporting

SME constraints.[5] A laboratory on Earth is subject to two primary motions relative to this frame:

1. Sidereal Rotation: The Earth spins on its axis with an angular frequency ω⊕. This rotation causes

the orientation of a fixed laboratory apparatus (and thus the light path direction n̂) to change

continuously with respect to the fixed background Kij tensor. This motion produces a signal that

modulates at the sidereal frequency ω⊕ and its first harmonic 2ω⊕. This ”sidereal modulation” is
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the primary signal sought in virtually all ground-based tests of Lorentz invariance.[6, 10, 11, 12]

2. Annual Orbit: The Earth orbits the Sun with a velocity v⊕ ≈ 30 km/s, corresponding to a boost

factor of β ≈ 10−4. The direction of this velocity vector β⃗ changes over the course of a year with

an angular frequency Ω⊕. This orbital motion provides the relativistic ”boost” required to probe

the kinematic term.

The novel O(ϵβ) term in the speed of light represents a direct coupling between these two motions.

The amplitude and phase of the daily sidereal modulation, which arises from the laboratory’s rotation

through the static field, will themselves be modulated as the direction of the laboratory’s orbital velocity

changes throughout the year.

motion of Earth’s rotation and orbital motion, which generates power at the sum and difference fre-

quencies, known as sidebands. Therefore, the ”smoking gun” signature for the 6DT model’s kinematic

structure is the appearance of statistically significant power at the sidereal-annual sideband frequencies:

ω⊕ ± Ω⊕ and 2ω⊕ ± Ω⊕. These frequencies are well-separated from the primary signals and most

sources of environmental noise, providing a clean, background-free channel in which to search for this

new physical effect.
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Figure 2: Conceptual frequency spectrum of the expected signal. The dominant signals appear at the
sidereal frequency ω⊕ and its first harmonic. The unique signature of the 6DT kinematic effect is the
presence of much smaller sideband peaks (in red) at frequencies ω⊕ ±Ω⊕ and 2ω⊕ ±Ω⊕, arising from
the coupling of Earth’s rotation and orbital motion.
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3 Experimental Design: A Relativistic Clock Comparison Test

3.1 Conceptual Framework: Using Earth’s Motion as the Relativistic ”Train”

The proposed experiment is a direct, modern realization of Einstein’s foundational thought experiments.

In this context, the Earth itself serves as the relativistic ”train,” moving at a stable velocity of β ≈ 10−4

through the Sun’s gravitationally-induced Kij field. An experiment fixed to the Earth’s surface is the

”observer on the train.” The fundamental task is to perform a high-precision measurement of the timing

of events—specifically, the one-way propagation time of light—on this moving platform and to search

for the unique temporal variations predicted by the 6DT framework.

3.2 Proposed Apparatus: A Ground-Based Array of Correlated Optical Atomic Clocks

Measuring the one-way speed of light requires two spatially separated clocks that are synchronized to an

extremely high degree of precision. The current state-of-the-art in time and frequency metrology is the

optical atomic clock, based on ultra-narrow optical transitions in trapped ions (such as Al+) or neutral

atoms confined in an optical lattice (such as Sr or Yb). These devices have demonstrated fractional

frequency instabilities below one part in 1018, making them the most precise scientific instruments ever

constructed.

The proposed apparatus consists of two such state-of-the-art optical atomic clocks separated by a

long baseline, L, on the order of 1 to 10 kilometers. The two clocks would be connected by a phase-

stabilized optical fiber link. To mitigate environmental disturbances, this fiber link could be housed in

an evacuated and thermally shielded tube. The core measurement of the experiment is not the abso-

lute frequency of the clocks, which is the observable in an HD-type experiment that tests the isotropy

of matter interactions.[10] Instead, the observable is the phase difference of the light signal required

to maintain a coherent optical lock between the two remote clocks. This phase difference is directly

proportional to the one-way light travel time along the fiber. This experimental approach combines

the unparalleled long-term stability of optical atomic clocks with the interferometric sensitivity to light

travel time characteristic of an MM experiment.[7]

3.3 Measurement Protocol and Signal Extraction

The experimental apparatus would be fixed in a terrestrial laboratory, with the baseline oriented to max-

imize sensitivity to the predicted effect (e.g., in an East-West or North-South direction). The phase

difference between the two clocks would be recorded continuously, with high sampling cadence, for a
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Optical Clock 1
(e.g., Sr, Yb)

Optical Clock 2
(e.g., Sr, Yb)

Phase / Frequency
Counter & Data Logger

Phase-Stabilized Optical Fiber Link
Baseline L ∼ 1− 10 km

Time Series Data ∆ϕ(t)

Figure 3: Schematic of the proposed experimental setup. Two high-precision optical atomic clocks
are separated by a long baseline L and linked by a phase-stabilized optical fiber. A frequency counter
continuously records the phase difference ∆ϕ(t) between the clocks, which is directly proportional to
the one-way light travel time.

duration of at least one full year to resolve the annual modulation and the crucial sideband frequencies.

The raw output of the experiment will be a time series of phase measurements. This time series

will be subjected to a sophisticated Fourier analysis to generate a high-resolution frequency spectrum.

The primary analysis will consist of a targeted search for statistically significant power at the specific

frequencies derived in Section 2.3: the primary sidereal frequencies ω⊕ and 2ω⊕, and most importantly,

the sidereal-annual sideband frequencies ω⊕ ± Ω⊕ and 2ω⊕ ± Ω⊕.

A critical component of the protocol will be the characterization and mitigation of systematic ef-

fects. The data processing pipeline must include corrections for known environmental and gravitational

influences, such as solid Earth tides, atmospheric pressure loading, thermal variations of the fiber link

and electronics, and seismic noise. The extensive experience gained from decades of modern MM ex-

periments, which require active stabilization systems and meticulous control of systematics to reach

sensitivities of ∆c/c < 10−16, provides a robust foundation for these procedures.[6, 7]

4 Sensitivity Analysis and Projected Constraints on the 6DT Model

4.1 Calculation of the Predicted Signal Magnitude

The magnitude of the timing variation expected from the 6DT effect can be calculated directly. The

differential one-way time delay, ∆t, over the baseline L will be a function of the changing orientation

of the apparatus relative to the solar system. This can be expressed as:

∆t(t) ≈ ϵ
L

c
f(n̂(t), β⃗(t),Kij) (7)

where f is a time-dependent geometric factor of order unity that captures the projection of the labora-

tory’s orientation and velocity vectors onto the background Kij tensor. Using the previously calculated
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magnitude of the solar Kij tensor at 1 AU (∼ 10−8), the Earth’s orbital boost factor (β ≈ 10−4), and

a plausible experimental baseline of L = 1 km, the amplitude of the timing signal at the sideband fre-

quencies can be estimated. The signal will be proportional to the product ϵβ|Kij |, yielding an expected

time variation on the order of ∆t ∼ ϵ× (10−12)× (3× 10−6 s) ∼ ϵ× 3× 10−18 seconds. This value

provides a direct target for the required sensitivity of the experiment.

4.2 Analysis of Dominant Noise Sources and Systematic Effects

The feasibility of measuring such a minuscule time variation depends critically on the ability to control

noise and systematic errors. For a long-baseline clock comparison experiment, the dominant source of

noise is typically phase fluctuations introduced into the connecting optical fiber by thermal drifts and

acoustic or seismic vibrations. These environmental perturbations alter the optical path length of the

fiber, mimicking a change in the light travel time.

However, state-of-the-art techniques for active optical fiber noise cancellation can overcome this

challenge. By reflecting a portion of the light back along the fiber and using the round-trip signal to

actively correct the phase of the transmitted light, it is possible to stabilize kilometer-scale fiber links

to fractional frequency stabilities at the 10−19 to 10−21 level. Other potential systematic effects, such

as gravitational redshift variations due to Earth tides or temperature-dependent delays in the laser and

electronic systems, must also be considered. A key advantage of the proposed measurement is that these

systematic effects typically have different temporal signatures (e.g., tidal effects modulate at the lunar

and solar diurnal and semi-diurnal frequencies) from the unique sidereal-annual sideband signal. This

allows them to be clearly distinguished and separated in the frequency domain, preserving the integrity

of the search for the 6DT kinematic effect.

4.3 Projected Sensitivity and Constraints on the 6DT Parameter ϵ

Based on the calculated signal magnitude and an analysis of achievable noise levels with current tech-

nology, it is possible to project the ultimate sensitivity of the proposed experiment to the fundamental

6DT parameter ϵ. Achieving a timing stability of 3× 10−18 seconds, which is ambitious but potentially

feasible with next-generation optical clocks and fiber stabilization, would allow for a constraint on ϵ at

the level of unity.

It is essential to place this projection in the context of existing constraints. Modern MM experiments

using cryogenic optical resonators have constrained the static anisotropy components (κ̃e−)jk to a level

of ∼ 10−17.[5, 6, 7] Since the signal in these experiments is proportional to ϵ|Kij |, and |Kij | from the
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Sun is ∼ 10−8, these results already imply an indirect constraint on the static manifestation of the 6DT

model at the level of |ϵ| ≲ 10−9.

The proposed experiment, which measures a signal proportional to ϵβ|Kij |, would need to achieve

a timing sensitivity that is roughly 1/β ≈ 104 times better than an equivalent static test to set a com-

petitive limit on the absolute magnitude of ϵ. While this is a formidable challenge, the scientific value

of the experiment is not merely in improving this limit. Its true power lies in its ability to test the kine-

matic structure of the theory itself. The 6DT model makes a specific, non-trivial prediction for how the

spacetime anisotropy transforms under a Lorentz boost. A standard SME analysis, by contrast, would

generally treat the coefficients governing static effects and those governing boost-dependent effects as

independent parameters.

Therefore, this experiment provides a qualitatively new type of constraint that is complementary to

all existing tests. By simultaneously measuring (or setting limits on) the amplitudes of the main sidereal

components and the sidereal-annual sideband components, one can perform a direct consistency check

of the 6DT framework. For instance, if a future MM experiment were to detect a non-zero sidereal

signal consistent with a value of ϵ ∼ 10−9, the 6DT model would make an unambiguous prediction

for the signal that must appear at the sideband frequencies in our proposed experiment. A failure to

observe that predicted sideband signal would falsify the kinematic structure of the 6DT model, even if

it did not falsify the existence of a static anisotropy. This capacity for model selection, which probes the

fundamental relationships between parameters predicted by the theory, offers a much deeper and more

powerful investigation of spacetime structure than a simple measurement of a single coefficient.

The following table contextualizes the proposed experiment within the landscape of modern high-

precision tests of Lorentz invariance.

Table 1: Comparison of High-Precision Tests of Lorentz Invariance

Metric Michelson-Morley Hughes-Drever Proposed Relativistic
(Cryogenic Resonators) (Comagnetometers) Clock Comparison

Primary Observable Two-way light speed Anisotropy of nuclear/ One-way light speed anisotropy
anisotropy (∆c/c) atomic energy levels for a boosted observer

Key SME Coefficients Photon sector: (κ̃e−)jk, Matter sector: bµ, cµν , etc. [10] Boost-dependent terms testing
(κ̃o+)jk [5] kinematic structure

Achieved Sensitivity ∼ 10−17 [6, 7] ∼ 10−34 GeV [10, 11] Projected timing stability:
∼ 10−20 s

Implied Constraint Static: |ϵ| ≲ 10−9 Static: (Model-dependent, Kinematic: Direct test of
on 6DT ϵ weaker on photon sector) boost effects
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5 Conclusion: A Novel Probe of Spacetime Structure

This report has detailed a proposal for a novel experiment designed to conduct a direct and targeted

test of the kinematic predictions of the 6DT spacetime framework. By utilizing a long-baseline, phase-

stabilized link between two correlated optical atomic clocks, the experiment can leverage the Earth’s

natural orbital motion as a relativistic probe of the gravitationally-induced spacetime anisotropy pre-

dicted by the model.

The key discovery is that the theory’s unique kinematic structure gives rise to a distinctive and

background-free experimental signature: a coupling between the daily sidereal rotation and the annual

orbital motion of the Earth, which manifests as power at specific sidereal-annual sideband frequencies in

the spectrum of the inter-clock phase signal. The search for this signal elevates the experiment beyond a

generic search for Lorentz violation. It constitutes a direct probe of the highly specific, gravitationally-

sourced, and rigidly correlated geometric structure that is the central prediction of the 6DT model.

The successful execution of this experiment would have profound implications. The detection of the

predicted sideband signal would provide the first evidence for the complex, multi-dimensional spacetime

structure envisioned by the 6DT model. Conversely, a null result would place the first direct experimen-

tal constraints on the theory’s predictions for observers in relativistic motion. In either outcome, the

experiment would fulfill the spirit of Einstein’s original inquiries into the fundamental nature of space

and time for moving observers, pushing the frontiers of our understanding of the fabric of the cosmos.
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