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Abstract

This paper proposes a new theoretical framework, Geometrically-Induced Mass

Variation (GIMV), derived from the Stoke-6DT unification which posits the identity

S6D = −c2dm0/dτ . We elevate this from a kinematic identity to a dynamic principle,

implying the nucleon rest massmN is not a constant but a scalar function of the local

gravitational environment. We formalize this by introducing a non-minimal coupling

(NMC) in the matter Lagrangian, LNMC = −ξKψ̄NψN , where K is a scalar invariant of

the gravitational tidal tensor and ξ is a new coupling constant. We rigorously derive

the consequences of this coupling for nuclear physics, demonstrating that the coeffi-

cients of the Semi-Empirical Mass Formula (SEMF) become functions of the tidal field,

ai → ai(K). This is achieved by linkingmN to the asymmetry term aA via the FermiGas

Model, and to the surface (aS) and Coulomb (aC) terms via a Chiral EFT-derived cou-

pling between mN and the nuclear radius parameter r0. We show that this coupling

leads to a dynamic, environment-dependent valley of stability and predicts the pos-

sibility of ”Geometrically-Induced Fission” (GIF), whereby a strong tidal field destabi-

lizes a nucleus by increasing aC and decreasing aS simultaneously. We conclude by

performing a quantitative analysis, calculating K in astrophysical environments and
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using observational constraints from Equivalence Principle tests to place the first up-

per bound on the coupling, ξ < 7.3 × 10−30 kg · s4. We find this bound renders GIMV

negligible in terrestrial settings but makes it a viable, high-impact phenomenon in

strong-field (e.g., kilonova) environments, consistent with all current observations.
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1 Introduction: Geometrically-InducedMassVariation (GIMV)

1.1 The Foundational Premise (Stoke-6DT)

The unification of general relativity and quantum mechanics remains the central chal-

lenge of modern physics. These two pillars describe disjoint realms: one governs the

large-scale geometry of spacetime, the other the quantum fields that populate it. In nu-

clear physics, this disconnect is absolute; the binding energy of a nucleus is treated as an

intrinsic property, wholly independent of the ambient gravitational field.

This work builds upon the theoretical foundation of the six-dimensional vector-time

(6DT) framework and its unification with the Stoke power concept [1, 2]. The Stoke-6DT

framework demonstrates that the projection of a 6D geodesic onto a 4D spacetime results

in an anomalous (non-geodesic) force, Aµanom.[5, 6] The work done by this force, S6D, was

shown to be identically equal to a change in the particle’s rest mass,m0:

S6D ≡ PµA
µ
anom = −c2dm0

dτ
(1)

Previous work treated this as a kinematic identity. This paper elevates it to a dynamic

principle. If an external force can dowork to change a particle’s restmass, then restmass

itself is not a fundamental constant but a dynamic scalar field,m0(x).[24, 25, 26]

The 6DT framework identifies the source of Aµanom as the geometry of the extra dimen-

sions, which are in turn sourced by the Hessian of the Newtonian potential, Kij = ∂i∂jΦ

[1]. The logical chain Aanom ↔ Kij and Aanom ↔ dm0 implies a direct, non-perturbative

coupling between the local gravitational tidal field and the particle’s rest mass. This is

the Geometrically-Induced Mass Variation (GIMV) hypothesis: m0 = m0(x,K).

1.2 Lagrangian Formalism (Non-Minimal Coupling)

To transition this hypothesis into a predictive physical theory, it must be embedded in

a Lagrangian formalism. We posit that the GIMV hypothesis is the phenomenological

expression of a new non-minimal coupling (NMC) between the nucleon matter field ψN

and the gravitational tidal field.[8, 9] The standard Dirac Lagrangian is modified by a
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new interaction term:

L = LDirac + LNMC = ψ̄N (iγ
µ∇µ −m0

N )ψN − ξKψ̄NψN (2)

Here,m0
N is the ”bare” nucleonmass in a tidally-flat spacetime (K = 0), ξ is the newGIMV

coupling constant, and K is a scalar invariant built from the gravitational tidal tensor.

This Lagrangian can be rewritten in the standard formL = ψ̄N (iγ
µ∇µ−meff

N (x))ψN , which

defines an effective, position-dependent nucleon mass[7]:

meff
N (x) = m0

N + ξK(x) (3)

This formalism provides a concrete, field-theoretic basis for GIMV, grounding the 6DT

concept in a testable 4D effective field theory.

1.3 Formal Hypothesis (Symbolic Logic)

The axiomatic structure of this theory can be stated in a formal logical language:

• GIMV Axiom:

∀ψN∀Kij∃ξ :
(
Nucleon(ψN ) ∧ TidalField(Kij)

)
→ mN (K) = m0

N + ξK

• SEMF Consequence:

∀ai ∈ {aV , aS , aC , aA} :
(
ai = f(mN , r0) ∧mN = mN (K) ∧ r0 = r0(mN )

)
→ ai = ai(K)

• GIF Prediction:

∃Kcrit,Nuc(A,Z) :
(
Bf (A,Z,K = 0) > 0 ∧Bf (A,Z,K ≥ Kcrit) ≤ 0

)
→ Fission(Nuc)

1.4 Report Outline

This paper rigorously derives the consequences of this non-minimal coupling LNMC. Sec-

tion 2 formalizes the tidal invariant K and its relation to General Relativity. Section 3
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derives the explicit functional dependence of all key SEMF coefficients on mN and, by

extension, K. Sections 4 and 5 apply this new formalism to derive the GIMV-modified

Valley of Stability and Fission Barrier. Finally, Section 6 performs a quantitative analy-

sis, calculating K in astrophysical settings and using observational data to place the first

concrete constraints on the coupling constant ξ.

2 The GIMV Formalism: Tidal Invariants and Effective Mass

2.1 The 6DT Anomalous Force and Tidal Tensor

As established in [2], the 6D geodesic projection onto 4D spacetime yields an anomalous

forceAµanom.[5, 6] The central ansatz of the 6DT framework is that this force is sourced by

theHessian of theNewtonianpotential,Kij = ∂i∂jΦ, which is the classical tidal tensor.[10]

2.2 The Tidal Scalar Invariant K

The Lagrangian in Eq. (2) must be a scalar, which requires coupling mN to a scalar in-

variant of the tidal field.

• Newtonian Invariant: The simplest non-trivial scalar invariant that can be con-

structed from the Newtonian tidal tensor is KN ≡ KijK
ij . We can analyze its physi-

cal dimensions. The gravitational potential Φ ∼ GM/r has units of L2/T 2. The tidal

tensor Kij = ∂i∂jΦ has units of Φ/L2 ∼ T−2. Therefore, the invariant KN has units

of (T−2)2 = T−4.

• Covariant (GR) Invariant: A fundamental field theory must be generally covari-

ant. The Newtonian tensor Kij is the weak-field, non-relativistic limit of the gravi-

toelectric components of the full Riemann curvature tensor, Rabcd.[11] To make the

GIMV framework compatible with general relativity, the coupling Kmust be a true

relativistic scalar.

We propose that the correct invariant for this theory is the full quadratic invariant

of the Riemann tensor, the Kretschmann scalar K[46, 47]:

KGR ≡ K = RabcdR
abcd
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• Consistency Check: We must verify that KGR and KN are physically consistent.

For a Schwarzschild spacetime of massM , the Kretschmann scalar is given exactly

by[47]:

K =
48G2M2

c4r6

The SI units of K are:

[K] ∼ [G]2[M ]2

[c]4[L]6
∼ (L3M−1T−2)2 ·M2

(L/T )4 · L6
∼ L6M−2T−4 ·M2

L4T−4 · L6
∼ T−4

TheNewtonian invariantKN and the full GRKretschmann scalarKGR have the iden-

tical physical units of T−4. This provides powerful justification for their identifica-

tion. We will henceforth define the GIMV invariant K as being proportional to the

Kretschmann scalar, K ≡ K/48, which provides an exact formula for the coupling

in strong-field environments:

K(r) =
G2M2

c4r6

2.3 Field-Theoretic Effective Mass

With the Lagrangian from Eq. (2), the field equation for ψN is derived from the Euler-

Lagrange equation, ∂µ( ∂L
∂(∂µψ)

)− ∂L
∂ψ = 0. This yields the modified Dirac equation:

(
iγµ∇µ − (m0

N + ξK(x))
)
ψN = 0

This is formally identical to the standard Dirac equation, but with the effective mass

meff
N (x) as defined in Eq. (3).

2.4 Dimensional Analysis of the Coupling ξ

From the effective mass equation,meff
N = m0

N +ξK, the physical units of the new coupling

constant ξ must be:

[ξ] =
[Mass]
[K]

Using SI units:

[ξ] =
kg
s−4

= kg · s4
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Any change in nucleonmass∆mN is related to the coupling by∆mN = ξK. This equation

will form the basis for all quantitative constraints on the GIMV theory.

3 Gravitational Modulation of the Nuclear Liquid Drop

This section provides the central theoretical derivations of the paper. We will re-derive

the key SEMF coefficients from their physical origins to explicitly track their dependence

on the GIMV-modified nucleon massmN and the resulting nuclear radius r0.

3.1 Asymmetry Term aA(mN) from the Fermi Gas Model

The asymmetry term aA is not a classical effect. It is a purely quantum-mechanical phe-

nomenon arising from the Pauli exclusion principle.[13, 27] A nucleus with an unequal

number of protons (Z) and neutrons (N ) must place the ”excess” nucleons in higher

energy-level ”slots,” increasing the total kinetic energy of the system and thus reducing

the overall binding energy.[14]

Wemodel the nucleus as two independent, non-relativistic Fermi gases (one for protons,

one for neutrons) confined within the nuclear volume V = 4
3πR

3 = 4
3π(r0A

1/3)3.[28]

1. The Fermi energy for each gas is EF =
p2F

2mN
= h̄

2

2mN
(3π2n)2/3, where n is the number

density (nZ = Z/V , nN = N/V ).

2. The total kinetic energy is the sum of the average energies for all nucleons: Ekin =

Z · 3
5EF,Z +N · 3

5EF,N .

3. Substituting the densities nZ and nN and expanding the result for a small asymme-

try (N − Z) (as detailed in [28]) yields:

Ekin ≈ C
h̄
2

mNr20
A+

[
1

6

(
9π

4

)2/3 h̄
2

2mNr20

]
︸ ︷︷ ︸

≡aA

(N − Z)2

A

This derivation proves the fundamental dependence of the asymmetry coefficient aA on
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the nucleon massmN and the radius parameter r0:

aA ∝ 1

mNr20

3.2 Coulomb aC(r0) and Surface aS(r0) Terms

The other key terms for fission also have well-defined dependencies.

• Coulomb Term (aC): This term arises from the electrostatic potential energy of

a uniformly charged sphere of radius R = r0A
1/3, which seeks to tear the nucleus

apart.[13, 29]

EC =
3

5

(Ze)2

4πϵ0R
=

(
3

5

e2

4πϵ0r0

)
︸ ︷︷ ︸

≡aC

Z2

A1/3

This establishes the dependency aC ∝ 1/r0.[12]

• Surface Term (aS): This term, analogous to surface tension in a liquid drop, cor-

rects for the fact that nucleons on the surface have fewerneighbors to bindwith.[13,

12] This stabilizing energy is proportional to the surface area S ∝ R2.

ES = CS ·R2 = CS · (r0A1/3)2 = (CSr
2
0)︸ ︷︷ ︸

≡aS

A2/3

This establishes the dependency aS ∝ r20.

3.3 The mN → r0 Coupling (The Missing Link)

The derivations above show that aA depends on mN , while aC and aS depend on r0. The

GIMV model is incomplete unless a change in mN can be shown to produce a change in

r0.

This link exists. The nuclear radius parameter r0 is not a fundamental constant but is an

emergent property derived from the equilibrium nuclear saturation density, ρ0.[30,

41, 42] This density represents the minimum-energy state of nuclear matter, a complex

balance between short-range attraction and long-range repulsion.

This balance is set by the fundamental forces, which (in an effective field theory model)
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are governed by themasses of the force-carryingmesons (mπ) and the nucleons (mN ).[44,

45] A change in mN alters this force balance and must therefore alter the equilibrium

saturation density ρ0 and the associated radius parameter r0.

We can quantify this link using results from Chiral Effective Field Theory (Chiral EFT)

and studies on the variation of fundamental constants. The sensitivity of r0 to changes

inmN andmπ has been calculated [43]:

δr0
r0

= Kπ
δmπ

mπ
+KN

δmN

mN
= 1.8

δmπ

mπ
− 4.8

δmN

mN

The GIMV model, as formulated in Eq. (2), is a direct coupling to the nucleon field ψN ,

not the pion field. Therefore, δmπ = 0. This provides the critical missing link:

δr0
r0

= −4.8
δmN

mN

This relationship is physically intuitive: an increase in the nucleon mass (δmN > 0) leads

to a decrease in the nuclear radius (δr0 < 0), as the more massive constituents form a

more tightly bound, denser system.

3.4 The GIMV-Modified SEMF Coefficients (Synthesis)

We can now combine these dependencies to find the total GIMV scaling factor for each

SEMF coefficient. We define the fractional mass change as ϵK ≡ δmN/mN = (ξ/m0
N )K.

• Asymmetry Term (aA):

From Section 3.1, aA ∝ (mNr
2
0)

−1.

δaA
aA

= −δmN

mN
− 2

δr0
r0

= −(ϵK)− 2(−4.8ϵK) = (−1 + 9.6)ϵK = +8.6ϵK

aA(K) ≈ a0A(1 + 8.6ϵK)

• Coulomb Term (aC):

From Section 3.2, aC ∝ r−1
0 .

δaC
aC

= −δr0
r0

= −(−4.8ϵK) = +4.8ϵK

9



aC(K) ≈ a0C(1 + 4.8ϵK)

• Surface Term (aS):

From Section 3.2, aS ∝ r20.

δaS
aS

= +2
δr0
r0

= 2(−4.8ϵK) = −9.6ϵK

aS(K) ≈ a0S(1− 9.6ϵK)

These derivations are the central theoretical result of this paper. They are summarized

in Table 1.

Table 1: GIMV Scaling Factors for SEMF Coefficients. This table summarizes the de-
rived response of the key SEMF coefficients to a fractional change in nucleon mass,
ϵK = δmN/mN .

Coefficient Physical Origin Proportional Dependence Log-Derivative Scaling GIMV Coefficient ζi = a0
i · (Col 4) · (ξ/m0

N )

aA (Asym.) Fermi Gas K.E. ∝ (mN r20)
−1 +8.6 +8.6(a0

A/m0
N )ξ

aC (Coulomb) E&M Repulsion ∝ r−1
0 +4.8 +4.8(a0

C/m0
N )ξ

aS (Surface) Surface Tension ∝ r20 −9.6 −9.6(a0
S/m0

N )ξ

4 Application I: The Dynamic Valley of Stability

If the SEMF coefficients that define nuclear stability are functions of the tidal field K,

then the ”valley of stability” itself is not a static feature of the nuclear landscape, but a

dynamic, flexible construct.

4.1 Derivation of the Beta-Stability Line

The line of most stable isobars (the center of the valley) is found by determining the

proton number Z that minimizes the nuclear mass M(A,Z) for a fixed mass number

A.[13, 17, 18] This minimum is found by setting the partial derivative ∂M(A,Z)
∂Z

∣∣∣
A
= 0.[12,

32]

The total mass is given by M(A,Z) = Zmp + (A − Z)mn − B(A,Z)/c2. Minimizing M is

equivalent to maximizing B(A,Z). We use the SEMF terms dependent on Z:

M(A,Z) ≈ C(A)− aC
Z(Z − 1)

A1/3
− aA

(A− 2Z)2

A

10



Taking the derivative with respect to Z (and approximating Z(Z − 1) ≈ Z2):

∂M

∂Z
≈ −2aCZ

A1/3
− aA

2(A− 2Z)(−2)

A
= −2aCZ

A1/3
+

4aA(A− 2Z)

A
= 0

Solving for Z gives the standard beta-stability line, Zstable(0):

Zstable(0) =
4aAA

2aCA2/3 + 8aA
=
A

2

1

1 + aCA2/3

4aA

(4)

We now introduce the GIMV-modified coefficients from Table 1, where ϵK = (ξ/m0
N )K:

Zstable(K) =
A

2

1

1 +
a0C(1+4.8ϵK)A2/3

4a0A(1+8.6ϵK)

(5)

This equation proves that the location of the valley of stability is a direct function of the

local tidal field. A nucleus that is perfectly stable on Earth (K ≈ 0) may find itself on

the ”wall” of a shifted valley in a strong tidal environment, rendering it unstable to beta

decay or electron capture. This provides a new, gravitationally-mediated decay channel

in extreme astrophysical environments like neutron star mergers.

4.2 Figure 1: The Nuclear Binding Energy Curve (Data-Driven)

The conceptual shift in nuclear stability is best illustrated by plotting the binding energy

curve. The solid line in Figure 1 is plotted using experimental data from the AME2003

atomic mass evaluation.[38, 39, 49] The dashed line illustrates the GIMV-shifted curve,

assuming a positive coupling ξ > 0 in a strong tidal field. In this scenario, aC and aA

increase while aS decreases (Table 1), leading to a general reduction in stability, a lower

peak at Fe-56, and a more pronounced drop-off for heavy nuclei, making fission more

favorable.

4.3 Figure 2: The GIMV-Shifted Valley of Stability (Data-Driven)

Figure 2 provides a data-driven visualization of the N -Z chart. The black points repre-

sent all known nuclides (data from [50]). The solid blue line is the standard beta-stability

line Zstable(0) as derived in Eq. (4), which correctly traces the center of the known iso-

topes. The dashed red line illustrates the Zstable(K) line (Eq. (5)) for a strong tidal field.
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Figure 1: Binding energy per nucleon across mass numbers. The solid blue line repre-
sents experimental AME2003 data.[38] The dashed red line illustrates the hypothetical
GIMV-shifted curve under a strong tidal field (K ≫ 0) assuming ξ > 0. In such conditions,
the surface term aS decreaseswhile aC and aA increase (Table 1), leading to reduced over-
all nuclear stability.

The entire valley shifts, demonstrating how nuclei that are stable in a zero-field environ-

ment (the black dots) would find themselves in a region of instability relative to the new,

shifted energetic minimum.
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Figure 2: GIMV-Shifted Valley of Stability. The black dots represent known nuclides.[50]
The solid blue line is the standard beta-stability line Zstable(0). The dashed red line is the
hypothetical Zstable(K) in a strong tidal field (assuming ξ > 0), which shifts to favor more
neutron-rich nuclei as the relative strength of aC and aA changes (Eq. 5).
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5 Application II: Geometrically-Induced Fission (GIF)

The most dramatic consequence of the GIMV framework is its effect on the fission bar-

rier. Nuclear fission is a competition between the stabilizing, short-range nuclear force

(Surface Term aS) and the destabilizing, long-range electrostatic Coulomb force (Coulomb

Term aC).

5.1 The Bohr-Wheeler Fission Barrier

Following the Bohr-Wheeler liquid drop model, we can calculate the potential energy

barrier a heavy nucleus must overcome to fission.[19, 20, 21, 31] We model the nucleus

deforming from a sphere (deformation ϵ = 0) to an ellipsoid.

1. Surface Energy (ES): As the nucleus deforms, its surface area increases. This in-

creases the surface energy, which acts as a ”restoring force” or ”glue” holding the

nucleus together.[35] For a small deformation ϵ:

ES(ϵ) ≈ ES(0)

(
1 +

2

5
ϵ2 + . . .

)

2. CoulombEnergy (EC): As the nucleus deforms, the repelling protonsmove farther

apart. This decreases the Coulomb energy, which acts as the ”driver” of fission.[35]

EC(ϵ) ≈ EC(0)

(
1− 1

5
ϵ2 + . . .

)

The total change in potential energy from deformation, which is the fission barrier Bf ,

is the sum of these changes [34]:

Bf (ϵ) ≈ ϵ2
(
2

5
ES(0)−

1

5
EC(0)

)

A nucleus is stable against spontaneous fission only if this barrier is positive (Bf > 0).

This requires the stabilizing surface term to be greater than the destabilizing Coulomb

term: 2ES(0) > EC(0).
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5.2 The Dynamic Fissility Parameter

The stability of a nucleus against fission is precisely quantified by the fissility param-

eter x, which is the ratio of the destabilizing Coulomb energy to twice the stabilizing

Surface energy [34, 15, 16, 33]:

x ≡ EC(0)

2ES(0)
=
aCZ

2/A1/3

2aSA2/3
=

(
aC
2aS

)
Z2

A

The fission barrier Bf is proportional to (1− x).

• If x < 1, the barrier is positive, and the nucleus is stable (e.g., U-238, x ≈ 0.78).

• If x ≥ 1, the barrier is zero or negative, and the nucleus fissions spontaneously.

We now introduce the GIMV-modified coefficients aC(K) and aS(K) from Table 1. The

fissility parameter itself becomes a function of the tidal field:

x(K) =
aC(K)

2aS(K)

Z2

A
≈

a0C(1 + 4.8ϵK)

2a0S(1− 9.6ϵK)

Z2

A

x(K) ≈ x(0)

[
1 + 4.8(ξ/m0

N )K
1− 9.6(ξ/m0

N )K

]
(6)

This is the central prediction of the GIMV framework for nuclear fission. Assuming a pos-

itive coupling constant (ξ > 0), an external tidal field K creates a powerful, cooperative

destabilization:

1. The Coulomb coefficient aC(K) increases, enhancing the destabilizing Coulomb

force.

2. The Surface coefficient aS(K) decreases, weakening the ”nuclear glue” that holds

the nucleus together.

Because x(K) is a ratio where the numerator increases and the denominator decreases,

the GIMV framework provides a doubly-potent mechanism for driving x(K) towards 1.

This is Geometrically-Induced Fission (GIF): a nucleus like U-238 or Th-232, which

is stable and non-fissile in a zero-field environment, could have its fissility driven to

x(K) ≥ 1 by a sufficiently strong, externally-applied tidal field, causing it to fission spon-

taneously.
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5.3 Figure 3: Fission Barrier Modulation (Quantitative Diagram)

Figure 3 illustrates this process. The solid blue line represents the potential energy bar-

rier for a stable nucleus like U-238. Energy must be added (e.g., via neutron capture) to

overcome the ≈ 6MeV barrier. The dashed red line shows the GIMV-modified potential

in a critical tidal fieldK ≥ Kcrit. Here, x(K) ≥ 1, the (1−x) termbecomes negative, and the

barrier vanishes entirely. The spherical ground state is no longer stable, and the nucleus

spontaneously fissions.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

−4

−2

2

4

6
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Ground State

Barrier

Spontaneous Fission

Deformation ϵ

Bf (ϵ,K) [MeV]
Bf (ϵ,K = 0) (Stable)
Bf (ϵ,K ≥ Kcrit) (GIF)

Figure 3: Conceptualization of Geometrically-Induced Fission (GIF). The solid blue line
shows the standard fission barrier Bf for a nucleus like U-238.[?] The dashed red line
shows the GIMV-modified potential Bf (K) in a critical tidal field. When the fissility pa-
rameter x(K) ≥ 1, the barrier vanishes and the nucleus becomes unstable against spon-
taneous fission.

6 Quantitative Analysis and Observational Constraints

The GIMV theory is predictive, but its viability depends on themagnitude of the coupling

constant ξ. This section provides the first quantitative calculations of the tidal invariant

K in relevant environments and uses observational data to place a hard upper bound on

ξ.

6.1 Tidal Invariants in Astrophysical Environments

We use the covariant formula for the GIMV invariant derived in Section 2.2, K(r) =

G2M2/(c4r6), which in the weak field is dimensionally equivalent to the Newtonian ap-
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proximation K ≈ (GM/r3)2.

• Earth (Surface):

M = 5.97× 1024 kg, r = 6.37× 106 m. KEarth ≈ (GM/r3)2 ≈ 2.3× 10−12 s−4.[36]

• 10M⊙ Black Hole (at ISCO):

M = 10M⊙ ≈ 1.99 × 1031 kg. ISCO radius r = 6GM/c2 ≈ 8.85 × 104 m. KBH-ISCO ≈

(GM/r3)2 ≈ 3.6× 1012 s−4.

• Neutron Star (Surface):

M = 1.4M⊙ ≈ 2.78× 1030 kg, r = 1.0× 104 m. KNS ≈ (GM/r3)2 ≈ 3.4× 1022 s−4.

The tidal field at the surface of a neutron star is ∼ 10 orders of magnitude stronger than

at the ISCO of a 10M⊙ black hole, and ∼ 34 orders of magnitude stronger than on Earth.

6.2 Table 2: Required ξ for a 1 MeV Nucleon Mass Shift

We can now calculate the value of ξ that would be required to produce a 1MeV change

in the nucleon mass (∆mN = 1MeV/c2 ≈ 1.78 × 10−30 kg), a shift large enough to have

significant consequences for nuclear reaction rates. We use the relation ξ = ∆mN/K.

Table 2: Tidal Invariant K and Required ξ for ∆mN = 1MeV
Environment Parameters Tidal Invariant K (s−4) Required ξ (kg · s4)

Earth (Surface) M⊕, R⊕ 2.3× 10−12 7.7× 10−19

10M⊙ BH (ISCO) M = 10M⊙, r = 6GM/c2 3.6× 1012 4.9× 10−43

Neutron Star (Surface) M = 1.4M⊙, r = 10 km 3.4× 1022 5.2× 10−53

6.3 Observational Constraints on the GIMV Coupling ξ

The GIMV theory is only viable if the coupling constant ξ is not already ruled out by

existing experiments. The hypothesismN = mN (K)means that a particle’s mass depends

on its position in a tidal field. This is a direct violation of the Equivalence Principle (EP).

• Laboratory (EP)Constraint: Eötvös-type torsion-balance experiments have tested

the universality of free fall for different materials, placing extraordinarily tight

bounds on any anomalous, composition-dependent force or mass variation. These

tests constrain a fractional mass change to ∆mN/m
0
N ≲ 10−14.
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• Deriving the Bound on ξ: We can use this experimental limit to place a hard upper

bound on the GIMV coupling constant ξ.

1. Constraint: ∆mN/m
0
N < 10−14

2. GIMV Hypothesis: ∆mN = ξK

3. This implies: ξKEarth/m
0
N < 10−14

4. Solving for ξ, using KEarth ≈ 2.3× 10−12 s−4 andm0
N ≈ 1.67× 10−27 kg:

ξbound <
10−14 ·m0

N

KEarth

ξbound <
10−14 · (1.67× 10−27 kg)

2.3× 10−12 s−4 ≈ 7.3× 10−30 kg · s4

• Astrophysical (GW/Kilonova) Constraints: Events like the binary neutron star

merger GW170817 provide independent constraints on the variation of fundamen-

tal constants in strong-field regimes.[37, 23]Models of kilonova nucleosynthesis are

highly sensitive to nuclear binding energies.[23, 22] A GIMV-driven change to the

SEMF coefficients would alter the r-process pathway, providing a future method

for constraining ξ in the strong-field regime.

6.4 Table 3: Summary of Constraints on the GIMV Coupling ξ

This table provides the final verdict on the GIMV theory’s viability by comparing the

hypothetical required couplings (from Table 2) with the hard experimental bound.

Table 3: Comparison of Hypothetical ξ Values with Observational Bounds
Constraint Source Observable Measured Limit Implied ξ (kg · s4)

Lab (Equiv. Principle) ∆m/m (Torsion Balance) < 10−14 < 7.3× 10−30

Hypothesis 1 ∆mN = 1MeV on Earth (Hypothetical) ∼ 7.7× 10−19

Hypothesis 2 ∆mN = 1MeV near NS (Hypothetical) ∼ 5.2× 10−53
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7 Conclusion and Future Work

7.1 Summary of GIMV Framework

Wehave synthesized the 6DT-Stoke andGIMV concepts into a single, testable, and covari-

ant theory based on the non-minimal coupling LNMC = −ξKψ̄NψN . We have identified

the GIMV invariant Kwith the quadratic Kretschmann scalarK ∝ G2M2/r6, providing a

concrete metric for the coupling.

7.2 Summary of Key Findings

1. Full SEMF Coupling: We successfully derived the GIMV-dependence for all key

SEMF coefficients (aA, aC , aS) by incorporating a Chiral EFT-derived link between

nucleon mass and nuclear radius (r0(mN )) from [43].

2. GIF Mechanism Validated: We found the GIMV effect cooperatively enhances fis-

sion. A strong tidal field (assuming ξ > 0) increases the destabilizing Coulomb term

(aC) while decreasing the stabilizing Surface term (aS), making the GIF mechanism

[15, 33] far more potent than previously assumed.

3. Quantitative Constraints (The ”Verdict”): Our analysis provides the most im-

portant conclusion for this new theory, as summarized in Table 3.

• The coupling ξ required to produce a 1MeV mass shift on Earth (ξ ∼ 10−19)

is ruled out by Equivalence Principle tests, which set a hard upper bound of

ξ < 7.3× 10−30 kg · s4.

• The coupling ξ required to produce a 1MeV shift near a neutron star (ξ ∼ 10−53)

is perfectly allowed and is more than 23 orders of magnitude below the cur-

rent experimental bound.

7.3 Final Conclusion & Future Work

The GIMV framework is not a ”terrestrial” theory. It is a strong-field-only theory. The

vast difference in magnitude of K between Earth (∼ 10−12 s−4) and a neutron star (∼

1022 s−4) creates a ∼ 34 order-of-magnitude ”shield,” allowing the GIMV coupling ξ to be
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small enough to be invisible to all terrestrial experiments, yet large enough to completely

dominate nuclear physics in the moments of a kilonova.

The theory is not only viable but offers a new, testable mechanism for astrophysical phe-

nomena. Future work must focus on:

1. Refining r0(mN ): Our derivation hinged on the KN = −4.8 coefficient from [43]. A

full ab initio nuclear lattice calculation is needed to confirm this scaling.

2. Kilonova Nucleosynthesis Models: Running r-process simulations [23, 22] with

the GIMV-modified ai(K) coefficients. The unique elemental ”fingerprint” of a kilo-

nova (e.g., GW170817) could be used to place a positive bound on ξ.

3. Exploring ξ < 0: We have assumed ξ > 0. A negative coupling constant would

stabilize nuclei in strong fields, an equally testable and fascinating astrophysical

prediction.
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