The Unification of Gravity and Mass Generation via Six-Dimensional Vector-Time: Theory, Constraints, and Phenomenological Signatures

Author: Blake Burns (blake.burns@gmail.com)

Blake Burns Technologies Inc.

License: Creative Commons 4.0 International Attribution (CC-BY)

(Dated: November 22, 2025)

We present the Six-Dimensional Vector-Time (6DT) framework, a unified field theory proposal that extends spacetime with a three-dimensional internal temporal vector space. Unlike previous multi-time theories, 6DT utilizes a gravity-coupled metric ansatz where the extra dimensions are sourced by the Hessian of the Newtonian gravitational potential, $K_{ij} = c^{-2}\partial_i\partial_j\Phi$. To preserve unitarity, we construct a constraint algebra based on the gauge group $SO(3)_t$, eliminating negativenorm ghost states via BRST quantization. We derive a covariant work-energy theorem for the projected 4D motion, identifying the "Stoke Power" S_{6D} done by anomalous geometric forces with the rate of change of the invariant rest mass: $S_{6D} = -c^2 \dot{m}_0$. This elevates mass variation from a kinematic effect to a dynamic principle, formalized as Geometrically-Induced Mass Variation (GIMV). We derive the coupling of the nucleon field to the Kretschmann scalar invariant \mathcal{K} , leading to environment-dependent coefficients for the Semi-Empirical Mass Formula. We predict a "Dynamic Valley of Stability" and "Geometrically-Induced Fission" (GIF) in strong-gravity environments. Finally, we establish a "Viability Gulf" of 34 orders of magnitude in tidal curvature between Earth and neutron stars, allowing the theory to satisfy stringent Equivalence Principle bounds ($\xi < 7.3 \times$ $10^{-30} \text{ kg} \cdot \text{s}^4$) while remaining dominant in astrophysical regimes. We propose a definitive test using optical atomic clocks to detect boost-dependent sidereal-annual sidebands in the speed of light. The quantum unification with gravity is explored in depth.

I. INTRODUCTION

The reconciliation of General Relativity (GR) with Quantum Mechanics (QM) remains the premier open problem in theoretical physics. While GR describes gravity as the curvature of a dynamical spacetime, QM operates on a fixed background with a unitary time evolution. Attempts to bridge these frameworks often involve quantizing geometry (Loop Quantum Gravity) or increasing spatial dimensionality (String Theory). A less explored but mathematically rich avenue is the extension of the *temporal* manifold.

Historical attempts at multi-time physics, such as those by Bars *et al.* in Two-Time (2T) physics [1], have

revealed hidden symmetries in the Standard Model but often struggle with causality and ghost states in a physical interpretation. The Six-Dimensional Vector-Time (6DT) framework proposed here differs fundamentally in its geometric ansatz. Rather than a global second time dimension, we posit a local internal vector-time space that is activated by gravity, coupling directly to the tidal curvature of the 4D "brane" (our observed spacetime). This approach ties the new degrees of freedom to gravitational environments, potentially evading the usual lowenergy constraints on extra time dimensions.

In this paper, we provide a comprehensive derivation and analysis of the 6DT framework, highlighting how it unifies gravitational dynamics with an intrinsic mechanism for mass generation. In Section II, we define the 6D manifold and the gravity-coupled metric ansatz, then develop the Hamiltonian constraints and gauge structure needed to eliminate negative-norm states. A key result is that an $SO(3)_t$ gauge symmetry acting on the internal time vector can reduce the theory to the usual singletime formulation (thus maintaining unitarity). In Section III, we present the 6DT action principle and derive the extended Einstein field equations, showing that our ansatz is a self-consistent solution (to leading order in the coupling) that reproduces Poisson's equation for the Newtonian potential. Section IV examines the motion of particles in the 6D geometry. We derive the anomalous 4-acceleration due to the extra dimensions and formulate the "Stoke Power" work-energy theorem, which links that anomalous force to changes in the particle's rest mass. In Section V, we elevate this effect to a field-theoretic principle, introducing Geometrically-Induced Mass Variation (GIMV): a non-minimal coupling of matter fields to spacetime curvature that effectively makes masses environment-dependent. We focus

on nuclear physics implications, deriving how nucleon masses and nuclear binding energies shift in regions of intense curvature. Section VI then confronts the theory with experiments and observations. We define the "Viability Gulf"—the enormous disparity in curvature between Earth's lab scale and neutron star interiors—and use it to reconcile the small coupling required by precision tests with the potentially large effects in extreme astrophysical settings. We also propose experimental tests, including high-precision atomic clock comparisons searching for distinctive sidereal-annual modulation effects that would confirm the vector-time structure. In Section VII, we discuss the conceptual implications of 6DT, comparing it with other approaches such as Kaluza-Klein theory and 2T physics, and outline future avenues. Finally, Section VIII concludes with a summary of results and emphasizes how 6DT provides a novel unification: connecting gravity, the origin of mass, and potential Lorentzviolating signatures in a single theoretical framework.

II. GEOMETRIC FOUNDATIONS

A. The 6D Manifold and Metric Ansatz

We postulate a six-dimensional pseudo-Riemannian manifold $\mathcal{M}^{(3,3)}$ with local coordinates $X^A = \{x^\mu, t^i\}$. Here, $\mu \in \{0,1,2,3\}$ labels the usual four spacetime coordinates (with $x^0 = ct$ as the ordinary time and x^1, x^2, x^3 the spatial coordinates on the 4D brane), and $i \in \{1,2,3\}$ labels the components of an internal time vector \vec{t} in a 3-dimensional temporal space. The total signature is chosen as (3,3), with three time-like directions and three space-like directions. In particular, the metric has three negative eigenvalues associated with $\{ct^1, ct^2, ct^3\}$ and three positive eigenvalues associated with the spatial directions. This symmetric choice of signature (3,3) en-

sures that the internal time components can mix under rotations (an SO(3) symmetry) without introducing superluminal propagation or acausal signal propagation in the physical 4D subspace. Physically, one can think of \vec{t} as a local "triplet of clocks" whose orientation is influenced by the surrounding gravitational field.

The defining feature of 6DT is the metric ansatz that couples the internal time and ordinary space sectors via the gravitational tidal tensor of the local matter distribution. In block matrix form, we posit the 6D metric:

$$G_{AB}(X) = \begin{pmatrix} -c^2 \, \delta_{ij} & \epsilon \, K_{ik}(x) \\ \epsilon \, K_{kj}(x) & g_{kl}(x) \end{pmatrix} , \qquad (1)$$

where $i, j \in \{1, 2, 3\}$ index the internal time directions and $k, l \in \{0, 1, 2, 3\}$ index the 4D spacetime directions. Here $g_{kl}(x)$ is the ordinary 4D spacetime metric (assumed for now to be close to Minkowski or a weak-field metric in a given coordinate patch), and δ_{ij} is the Euclidean metric on the internal time space. The off-diagonal block $K_{ik}(x)$ is the key innovation: it is taken to be proportional to the Hessian (second spatial derivatives) of the Newtonian gravitational potential $\Phi(x)$ evaluated on the 4D slice:

$$K_{ij}(x) = \frac{1}{c^2} \,\partial_i \partial_j \Phi(x) \;, \tag{2}$$

with ϵ a small dimensionless coupling constant controlling the strength of the 5-6 metric mixing. In practice, $\Phi(x)$ can be identified with the weak-field limit of the g_{00} metric component (so that $\Phi \approx -\frac{1}{2}c^2(1+g_{00})$ in a quasi-static gravitational field). The spatial indices i,jin K_{ij} correspond to derivatives in the ordinary spatial directions x^1, x^2, x^3 . This ansatz ensures that in a region with a uniform gravitational field (where $\partial_i \partial_j \Phi = 0$ i.e. no tidal gradients), the extra time dimensions decouple completely: $K_{ij} = 0$ and the metric (1) factorizes into a direct product of the standard 4D spacetime and a flat 3D internal space. This important property means local inertial frames (free-fall frames in GR) do not feel the presence of \vec{t} — preserving the Equivalence Principle locally, since a freely falling observer in a uniform field can rotate away any constant vector-time components. Conversely, in regions with strong tidal gravity (such as near a gravitating mass or inhomogeneity), the off-diagonal metric components K_{ik} become significant, introducing new effects in particle dynamics. The dimensionless coupling ϵ will be tightly constrained by experiments (as we address in Section VI), but could be of order unity in extreme astrophysical settings without contradicting known physics.

It is useful to interpret the structure of K_{ij} . In Newtonian terms, $K_{ij}(x)$ is the tidal tensor: for a point mass M in the weak-field limit, $\Phi(x) = -GM/r$ and

$$\partial_i \partial_j \Phi = -GM \, \partial_i \partial_j \frac{1}{r} = -GM \, \frac{3x_i x_j - \delta_{ij} r^2}{r^5} \,,$$

which has trace zero $(\delta^{ij}K_{ij}=0)$ in vacuum) and eigenvalues that reflect the familiar tidal stretching/compression along radial and tangential directions. In our metric, this K_{ij} plays a role analogous to a field strength or potential coupling the internal \vec{t} coordinates to the spacetime coordinates. Indeed, one can think of $\epsilon K_{\mu i}$ (with μ a spacetime index and i an internal index) as a set of effective gauge fields induced by gravity, albeit they are not independent fields but fixed by the second derivatives of $\Phi(x)$. This is in contrast to Kaluza-Klein theories where extra off-diagonal metric elements $g_{\mu 5}$ produce genuine gauge fields (such as the electromagnetic A_{μ}) with their own field equations [2]. Here, the off-diagonals $\epsilon K_{\mu i}$ are non-dynamical in the sense that they are entirely determined by the local matter distribution

through $\Phi(x)$. This approach ties the new vector-time sector to known physics (gravity) and avoids introducing long-range forces beyond GR, making the framework phenomenologically more palatable. It also implies that any observable effects of the extra time dimensions will manifest only in the presence of nonzero tidal curvature and will vanish in gravity-free or uniformly gravitating regions.

Finally, we note that the small parameter ϵ is critical for ensuring the metric (1) remains physically sensible. Since K_{ij} typically has dimensions of [Tidal acceleration] $\sim (\text{time})^{-2}$, ϵK_{ik} is dimensionless in the metric (having units of c^2 times dimensionless coupling, scaled by Φ 's second derivatives). We assume $|\epsilon K_{ik}| \ll c^2$ in all regions accessible to experiment, which guarantees that G_{AB} has the correct (3,3) signature everywhere (no sign flips in the metric eigenvalues) and that perturbation theory in ϵ is valid. Indeed, as we show later in Section VI, current experiments constrain ϵK_{ij} on Earth to be extremely small. In extreme conditions like neutron stars, ϵK_{ij} may become order unity in dimensionless terms, and the full non-linear structure of 6DT would come into play.

B. Constraint Algebra and Ghost Elimination

Extending time to a multi-component object raises the specter of *ghosts*—states of negative norm or energy that typically arise if extra time-like degrees of freedom propagate unconstrained. To formulate a consistent theory, we impose a set of first-class constraints on the 6D phase space that effectively remove any unphysical degrees of freedom associated with the extra times. The guiding principle is to enforce that only one effective time parameter governs physical evolution, even though that time can have an internal vector character.

Let P_A denote the canonical momentum conjugate to X^A . In particular, P_{t^i} are the momenta conjugate to the internal time coordinates t^i , and P_{μ} are the momenta conjugate to the spacetime coordinates x^{μ} . The natural generalized "mass-shell" condition in 6D can be written as a Hamiltonian constraint:

$$\Phi_0 \equiv \frac{1}{c^2} G_{ij}^{(t)} P_{t^i} P_{t^j} + m^2 c^2 \approx 0, \qquad (3)$$

where $G_{ij}^{(t)} = -c^2 \, \delta_{ij}$ is the metric on the internal time subspace (the inverse of $-c^2 \delta_{ij}$ that appears in the upper-left of (1)), and m is the invariant rest mass of the particle. In writing (3), we assume the point-particle action in 6D takes the form $S = -mc \int d\tau \sqrt{-G_{AB}U^AU^B}$ (with $U^A = dX^A/d\tau$), which yields both the geodesic equations and this primary mass-shell constraint on momenta. The constraint $\Phi_0 \approx 0$ ensures that motion in the internal time directions is linked to the particle's rest mass, analogously to how the usual 4D mass-shell $-P_{\mu}P^{\mu}+m^2c^2=0$ constrains energy-momentum in relativity.

Next, we impose three additional constraints associated with an $SO(3)_t$ gauge symmetry that acts on the internal time indices. We introduce

$$J_{ij} \equiv t_i P_{t^j} - t_j P_{t^i} \approx 0 \qquad (i < j). \tag{4}$$

These J_{ij} are the generators of rotations in the 3-dimensional internal time space (they are analogous to angular momentum components, with t_i and P_{t^i} playing the roles of "coordinates" and "momenta" in that internal space). Enforcing $J_{ij} = 0$ means the internal time vector \vec{t} can be rotated arbitrarily without changing physical state, and likewise the momentum associated with \vec{t} can rotate accordingly. In essence, \vec{t} has no preferred direction in the absence of a gravitational field (and even in a gravitational field, any choice of basis in \vec{t} space is

physically equivalent, which will ensure that no spurious polarization states propagate). The three constraints J_{ij} (with i < j giving 3 independent conditions) generate the $SO(3)_t$ gauge transformations.

It is straightforward to check that these constraints are all of first class. The Poisson bracket algebra among them closes according to the so(3) Lie algebra:

$${J_{ij}, J_{kl}}_{P.B.} = \delta_{jk} J_{il} - \delta_{ik} J_{jl} - \delta_{jl} J_{ik} + \delta_{il} J_{jk}, (5)$$

which is just the statement that J_{ij} 's generate rotations in the 3-vector space. Moreover, one finds that J_{ij} commute (weakly) with the mass-shell constraint Φ_0 :

$$\{J_{ij}, \Phi_0\}_{P.B.} \approx 0,$$
 (6)

since Φ_0 was constructed to be manifestly SO(3) invariant $(G_{ij}^{(t)}P_{t^i}P_{t^j})$ is proportional to $\delta_{ij}P_{t^i}P_{t^j}$, which is rotationally invariant in the internal indices). Thus Φ_0 is also first-class. We started with a 12-dimensional phase space for a particle in 6D (X^A and P_A , 6 each), but we have 1+3 first-class constraints. By standard counting, first-class constraints remove two phase-space dimensions each (one for the constraint, one for the associated gauge-fixing condition). Therefore the total number of independent physical phase-space degrees of freedom is 12 - 2(1+3) = 4. This matches the usual 4D result (a massive particle in 4D has 3 spatial coordinates plus a conjugate energy, minus one mass-shell constraint yields 3*2+... etc, ultimately 4 physical phase-space dimensions corresponding to one true temporal and three spatial degrees). In other words, the constraints reduce the apparent extra dimensions to an unobservable gauge. The theory propagates no ghost-like excitations: all unphysical polarization or negative-norm states in the internal time sector are pure gauge artifacts that can be eliminated by

appropriate gauge choice. The invariance under $SO(3)_t$ rotations of \vec{t} ensures that only the magnitude of the internal time interval (related to the particle's proper time) has physical meaning, not its orientation in the 3D time space.

C. BRST Quantization and Unitarity

The above classical constraints must be consistently implemented in the quantum theory to avoid negativenorm states. We therefore adopt the BRST quantization procedure, which is designed for systems with firstclass constraints and gauge symmetries. We introduce ghost fields c^{α} and corresponding antighosts b_{α} for each first-class constraint Φ_{α} (here Φ_{α} would index the single Hamiltonian constraint Φ_0 and the three $SO(3)_t$ generators J_{ij}). The BRST charge Q is constructed as:

$$Q = \sum_{\alpha} c^{\alpha} \Phi_{\alpha} - \frac{1}{2} \sum_{\alpha,\beta,\gamma} f_{\alpha\beta}^{\ \gamma} c^{\alpha} c^{\beta} b_{\gamma} , \qquad (7)$$

where $f_{\alpha\beta}^{\ \gamma}$ are the structure constants of the constraint algebra. In our case, the second term encodes the SO(3) commutation relations for J_{ij} . The BRST charge is nilpotent $(Q^2=0)$ as long as the constraint algebra closes and satisfies the Jacobi identity, which we have already verified for the $SO(3)_t$ algebra. Physical states $|\Psi\rangle$ in the quantum Hilbert space are then defined as those in the cohomology of Q, i.e. $Q|\Psi\rangle=0$ (BRST-closed) modulo any state of the form $Q|\chi\rangle$ (BRST-exact). These conditions ensure that two states differing only by a gauge transformation are identified (as $|\Psi\rangle-|\Psi'\rangle=Q|\chi\rangle$ for some $|\chi\rangle$ means $|\Psi\rangle$ and $|\Psi'\rangle$ are physically equivalent), and that no negative-norm ghost states appear as external states. The inner product is constructed such that the ghost sector has an indefinite metric (ghosts carry

negative norm), but the physical cohomology states have positive norm due to cancellation of ghost contributions. In effect, BRST quantization removes the ghost degrees of freedom while preserving unitarity of the S-matrix for physical states. This formalism is directly analogous to how gauge theories (like QCD or QED) handle unphysical polarizations of gauge bosons via the Faddeev-Popov trick and BRST symmetry. Here, the $SO(3)_t$ gauge symmetry plays the role of an internal gauge symmetry ensuring a unitary theory. We thus conclude that at the quantum level, the 6DT framework can be made ghost-free and unitary: any state that would correspond to excitation along an unphysical time direction is eliminated by the constraint $J_{ij}|\Psi\rangle=0$ and BRST consistency.

III. 6DT ACTION AND FIELD EQUATIONS

Up to this point, we have treated the 6D metric (1) as a background ansatz sourced by the Newtonian potential $\Phi(x)$ of some matter distribution. We now promote the metric to a dynamical entity and formulate the field equations of 6DT gravity. Our starting point is a six-dimensional Einstein-Hilbert action with the metric $G_{AB}(X)$:

$$S_{\text{grav}} = \frac{1}{2\kappa_6^2} \int d^6 X \sqrt{-G} R^{(6)}[G],$$
 (8)

where $R^{(6)}$ is the Ricci scalar curvature of the 6D metric and $\kappa_6^2 = 8\pi G_6$ defines the 6D gravitational coupling constant (G_6 has units of (length)⁴/mass/time², which can be related to 4D G once a compactification or physical scaling is specified). We assume any 6D cosmological constant is zero or negligible at the scales of interest. Varying (8) with respect to G_{AB} yields the 6D Einstein

field equations:

$$R_{AB}^{(6)} - \frac{1}{2}G_{AB}R^{(6)} = \kappa_6^2 T_{AB}^{(6)},$$
 (9)

where $T_{AB}^{(6)}$ is the stress-energy tensor in 6D. To connect with our ansatz, we now need to specify the matter content in 6D. A conservative approach is to assume that ordinary 4D matter fields live on (or are smeared across) the 4D submanifold (brane), meaning $T_{AB}^{(6)}$ has support primarily in the 4×4 block corresponding to the spacetime directions. We do *not* introduce any exotic matter propagating purely along the internal time directions; this keeps the model minimal and avoids sourcing potentially dangerous excitations in the extra sector. In practice, one can take $T_{AB}^{(6)}$ to be of the form

$$T_{AB}^{(6)}(X) = \delta_A^{\ \mu} \, \delta_B^{\ \nu} \, T_{\mu\nu}^{(4)}(x) \, \delta^3(\vec{t}) \,,$$

i.e. ordinary 4D stress-energy $T_{\mu\nu}^{(4)}(x)$ localized at $\vec{t}=0$ (the origin of the internal time space). This reflects that familiar matter fields do not propagate in \vec{t} and that any coupling of matter to \vec{t} is through gravity only (consistent with the Equivalence Principle: all matter feels gravity universally including any effects from the metric extension). For the purpose of deriving field equations for the metric ansatz, we will assume a continuous distribution for simplicity, with $T_{AB}^{(6)}$ effectively nonzero only when A, B are spacetime indices.

We now plug the metric form (1) into the Einstein equations (9) and examine the structure. In general, solving the full 6D equations exactly is complicated, but we can expand in powers of the small coupling ϵ . Setting $\epsilon = 0$ decouples the extra dimensions, and the 6D equations reduce to ordinary 4D GR plus three additional flat dimensions (with no coupling between them). To first order in ϵ , the Einstein tensor can be expanded and

one finds a system of equations for $K_{ij}(x)$ coupled to the 4D metric $g_{kl}(x)$. Schematically, we can write the components of the 6D Einstein equations (suppressing index positions and focusing on the independent blocks) as:

$$G_{tt}^{(6)}: G_{ij}^{(t)} + \epsilon D_{ij}[K] + \mathcal{O}(\epsilon^2) = \kappa_6^2 T_{ij}^{(6)},$$
 (10a)

$$G_{tx}^{(6)} : \epsilon L_i[\partial K] + \mathcal{O}(\epsilon^2) = \kappa_6^2 T_{i\mu}^{(6)},$$
 (10b)

$$G_{xx}^{(6)}: G_{\mu\nu}^{(4)} + \epsilon M_{\mu\nu}[K] + \mathcal{O}(\epsilon^2) = \kappa_6^2 T_{\mu\nu}^{(6)}.$$
 (10c)

Here $G_{\mu\nu}^{(4)}$ is the 4D Einstein tensor of the spacetime metric $g_{kl}(x)$, while $G_{ij}^{(t)}$ denotes the Einstein tensor components along the internal time directions (which in the $\epsilon \to 0$ limit reduce to simply $-c^2 \delta_{ij} R^{(6)}/2$ since the internal space is flat when decoupled). The symbols $D_{ij}[K], L_i[\partial K], \text{ and } M_{\mu\nu}[K] \text{ represent certain differen-}$ tial operators (involving spatial derivatives and connections) acting on $K_{ij}(x)$. Their explicit forms are lengthy, but conceptually: - Equation (10a) (the internal-internal component of Einstein's equations) becomes an elliptic equation for the trace and spatial divergence of K_{ij} . At leading order, it demands that any curvature in the internal time sector (represented by $G_{ij}^{(t)}$) is sourced by gradients of K_{ij} . Because $T_{ij}^{(6)}$ is zero for i, j (no matter purely in internal sector), this equation in vacuum essentially reduces to a homogeneous condition on K_{ii} . - Equation (10b) (the mixed components) relates spatial derivatives of K_{ij} (through $L_i[\partial K]$) to any momentum flow or stress connecting the 4D and internal sectors $(T_{i\mu}^{(6)})$. In our minimal matter scenario $T_{i\mu}^{(6)} = 0$ (since matter has no i index), this implies that $L_i[\partial K] = 0$. This condition can be interpreted as requiring $K_{ij}(x)$ to be derived from a potential (which indeed we assumed: $K_{ij} = c^{-2}\partial_i\partial_j\Phi$ automatically satisfies $\epsilon L_i[\partial K] = 0$ because a pure Hessian has zero curl, etc.). - Equation (10c) (the ordinary spacetime components) yields a modified 4D Einstein equation. To leading order, one gets $G_{\mu\nu}^{(4)} = \kappa_6^2 T_{\mu\nu}^{(6)} - \epsilon \, M_{\mu\nu}[K]$. The $M_{\mu\nu}[K]$ term acts like an additional source in the 4D Einstein equation arising from the presence of the K field. In effect, K_{ij} contributes extra stress-energy back onto the 4D metric, which can be viewed as the gravitational back-reaction of the vector-time sector.

The important point is that to $\mathcal{O}(\epsilon)$, the system of equations for K_{ij} is *linear* and resembles a Poisson-like equation. In fact, taking the trace of the spatial part or appropriate combination of the above equations, one finds that $K_{ij}(x)$ must satisfy an equation of the form:

$$\nabla^2 K_{ij}(x) + \dots = \frac{8\pi G_{\text{eff}}}{c^2} \,\partial_i \partial_j \rho(x) + \mathcal{O}(\epsilon) \,, \qquad (11)$$

where $\rho(x)$ is the mass density and $G_{\rm eff}$ an effective gravitational coupling. The precise form of (11) involves the differential operators D, L, M acting on K, but one solution that clearly satisfies the static limit of these equations is indeed

$$K_{ij}(x) = \frac{1}{c^2} \,\partial_i \partial_j \Phi(x) \,, \tag{12}$$

with $\Phi(x)$ obeying the usual Poisson equation $\nabla^2 \Phi = 4\pi G \rho(x)$ in the 4D slice. In other words, our metric ansatz with K_{ij} defined as the Hessian of the Newtonian potential is consistent (to first order in ϵ) with the 6D Einstein equations: the internal sector field equations reduce to the condition that Φ be a gravitational potential produced by the matter distribution $\rho(x)$. This justifies our ansatz as a valid solution (or at least a valid approximation) of the full theory.

For a concrete illustration, consider a static, spherically symmetric mass M (e.g. a star or planet). In standard GR, the exterior Schwarzschild solution at large r is $g_{00} \approx -(1-2GM/(c^2r))$ and $g_{ij} \approx (1+2GM/(c^2r))\delta_{ij}$ to

leading order, so $\Phi(r) \approx -GM/r$. Our 6D metric ansatz in this case yields:

$$K_{ij}(r) = \frac{GM}{c^2} \frac{3 x_i x_j - \delta_{ij} r^2}{r^5} ,$$

which is just the vacuum tidal tensor of the mass. Plugging this into the 6D Einstein equations (with $T_{AB}^{(6)} = 0$ in the vacuum region $r > R_{\oplus}$) one can verify that all components are satisfied to $\mathcal{O}(\epsilon)$. The mixed components $G_{tx}^{(6)}$ vanish because K_{ij} is a pure gradient (no "gravitomagnetic" components), and the internal $G_{tt}^{(6)}$ components reduce to Laplace's equation $\nabla^2(\partial_i\partial_j\Phi)=0$ (which holds for $r \neq 0$ since $\nabla^2 \Phi = 0$ outside the mass, and $\partial_i \partial_j$ commutes with ∇^2 on a scalar). The $G_{xx}^{(6)}$ components reduce to the usual $\nabla^2 \Phi = 0$ which is true outside. Thus, the ansatz (1) with (2) is not just an arbitrary proposal—it aligns with a consistent perturbative solution of the extended field equations in 6D. Deep inside strong fields or for dynamical situations, higher-order ϵ terms would become important, potentially leading to non-linear equations for K_{ij} and modifications of $g_{\mu\nu}$; those lie beyond our present scope but are conceptually approachable via this framework.

To summarize, the 6DT gravity theory can be formulated in a self-consistent way: by writing down the 6D action and field equations, we see that our choice to source the extra-time metric components by the Newtonian potential is justified as a solution of those equations (ensuring we recover standard gravity where expected). Furthermore, no new long-range fields beyond GR appear at leading order, which is essential for compatibility with observations (e.g., we do not get a massless scalar or vector propagating from the extra sector that would violate tested gravitational laws—the effects of K_{ij} only appear in tidal regimes and are governed by the same

source as Newtonian gravity). In higher sections, we will not need the full machinery of these 6D field equations; rather, we will take the metric ansatz (1) as our working model and explore its consequences for particle motion and field interactions.

A. Modified Geodesic Equation and Anomalous Acceleration

A test particle in the 6DT geometry follows a geodesic in \mathcal{M}^6 , which satisfies the geodesic equation:

$$\frac{dU^A}{d\tau} + \Gamma^A_{BC}(X) U^B U^C = 0, \qquad (13)$$

where $U^A=dX^A/d\tau$ is the 6-velocity and Γ^A_{BC} are the Christoffel symbols of the 6D metric. We are particularly interested in the *projected* motion on the 4D spacetime submanifold, i.e. the trajectory $x^{\mu}(\tau)$. Its acceleration can be obtained by looking at the μ -components of the geodesic equation:

$$\frac{dU^{\mu}}{d\tau} + \Gamma^{\mu}_{BC} U^B U^C = 0. \tag{14}$$

Decomposing the index B (and C) into spacetime and internal parts, there will be terms involving $\Gamma^{\mu}_{\nu\sigma}U^{\nu}U^{\sigma}$ (which represent the 4D geodesic motion under the effective 4D metric $g_{\mu\nu}$), and terms involving $\Gamma^{\mu}_{\ i\nu}U^{i}U^{\nu}$ or $\Gamma^{\mu}_{\ ij}U^{i}U^{j}$ that represent influences from motion in the internal \vec{t} directions. Using our metric ansatz (1), one finds that the dominant new term (to first order in ϵ) in the 4-acceleration comes from Christoffel symbols with

one internal index:

$$\Gamma^{\mu}_{\nu i} \approx -\frac{1}{2} g^{\mu \sigma} \left(\partial_{\nu} W_{\sigma i} - \partial_{\sigma} W_{\nu i} \right) , \qquad (15)$$

where we have defined $W_{\mu i}(x) \equiv \epsilon K_{\mu i}(x)$ for convenience. Here ∂_{ν} denotes partial derivative with respect to the spacetime coordinate x^{ν} . This form is suggestive: it looks analogous to an electromagnetic field tensor $F_{\nu\sigma} = \partial_{\nu} A_{\sigma} - \partial_{\sigma} A_{\nu}$ contracted with a "vector potential" A_{σ} , except that here the "potential" is $W_{\sigma i}$ and it carries an internal index i. The antisymmetric combination $\partial_{\nu} W_{\sigma i} - \partial_{\sigma} W_{\nu i}$ arises from the derivatives of the metric's off-diagonal components.

Plugging this into the geodesic equation, the 4D acceleration $a^{\mu} \equiv DU^{\mu}/d\tau$ (with $D/d\tau$ the covariant derivative in 4D) picks up an anomalous term:

$$a_{\text{anom}}^{\mu} = -g^{\mu\sigma} (\partial_{\nu} W_{\sigma i} - \partial_{\sigma} W_{\nu i}) U^{\nu} U^{i} + \mathcal{O}(\epsilon^{2}). \quad (16)$$

We use $U^i = dt^i/d\tau$ to denote the velocity components in the internal time directions. Several important features are evident from (16):

- The anomalous force is velocity-dependent. It is proportional to $U^{\nu}U^{i}$, meaning it vanishes if either the particle has no velocity in the internal time space $(U^{i}=0)$ or if it is at rest in the 4D space (U^{ν}) only has a time component. In a typical scenario, a particle initially at rest in an inertial frame has $U^{i}=0$, so no anomaly until motion or gravitational inhomogeneity causes \vec{U}_{t} to grow. This is reminiscent of how magnetic forces require charges to be moving; here the internal time acts somewhat analogously to a "charge" that must be in motion to feel a force.
- The force depends on spatial gradients of $K_{\mu i}$.

Since $K_{\mu i}(x)$ is built from $\partial_{\mu}\partial_{i}\Phi$, roughly speaking $\partial_{\nu}K_{\sigma i}$ will involve third derivatives of Φ . Thus the anomalous acceleration is sensitive to spatial variations of the tidal field (e.g. a changing tidal field across space or in time). In a uniform gravitational field (constant K_{ij}), $\partial_{\nu}W_{\sigma i}=0$ and indeed $a_{\text{anom}}^{\mu}=0$ as expected by the Equivalence Principle.

- There is no explicit dependence on the internal coordinates tⁱ themselves in (16), only on the internal velocity Uⁱ. This is a consequence of our SO(3)_t symmetry and the fact that physical effects cannot depend on the absolute orientation of t

 , only on how fast it changes relative to the 4D motion.
- The structure $\partial_{\nu}W_{\sigma i} \partial_{\sigma}W_{\nu i}$ hints that $W_{\mu i}$ acts like an SO(3) gauge field (with field strength components given by that combination). Indeed, one can show that $\partial_{[\nu}W_{\sigma]i}$ transforms under internal rotations in a way similar to a non-Abelian field tensor (though here the gauge group is fixed and tied to spacetime derivatives).

To make this concrete, consider a simple scenario: a particle moving slowly in the gravitational field of Earth (so Φ is approximately $-GM_{\oplus}/r$). The dominant component of K_{ij} is $K_{rr} = -\frac{2GM_{\oplus}}{c^2r^3}$ (radial tidal compression) and $K_{\theta\theta} = K_{\phi\phi} = +\frac{GM_{\oplus}}{c^2r^3}$ (tangential stretching). If the particle moves horizontally (tangentially) with some velocity v and has some initial internal velocity U^i (perhaps from a prior encounter or oscillation of the internal clock vector), then $\partial_{\nu}K_{\sigma i}$ will be nonzero as it moves into regions of slightly different r. Equation (16) then yields an anomalous acceleration which, depending on the orientation of U^i , could have components both radially and tangentially. This could manifest as a tiny perturbation

to the trajectory, potentially measurable as a deviation from a geodesic. However, as we will see in Section VI, for Earth ϵ is so small that such deviations are far below detectability with current technology (hence the need for specialized experiments).

B. Work-Energy Theorem and the Stoke Power

One of the most striking implications of the 6DT framework is that a particle's rest mass can change in response to motion through tidal fields. We now derive a covariant work-energy theorem that makes this precise. In standard 4D relativity, if a particle of constant rest mass m experiences a 4-force f^{μ} , energy-momentum conservation can be expressed as $P_{\mu}f^{\mu} = \frac{d}{d\tau} \left(-\frac{1}{2}m^2c^2 \right) = 0$ (since m is constant, any 4-work done goes into kinetic energy). However, in our case there is an "anomalous" 4-force arising from the extra dimensions which can do work on the particle by changing its rest mass energy.

The particle's 4-momentum is $P_{\mu} = m(\tau)U_{\mu}$, where $m(\tau)$ is the varying rest mass and U_{μ} is the 4-velocity (with $U_{\mu}U^{\mu} = -c^2$ by normalization). The covariant derivative of the momentum is:

$$\frac{DP_{\mu}}{d\tau} = \frac{d}{d\tau} (mU_{\mu}) - mU^{\nu} \Gamma^{\lambda}_{\mu\nu} U_{\lambda} ,$$

but since U_{μ} satisfies the geodesic equation in 6D, the second term accounts for the spatial part of acceleration (which includes the anomaly), and the first term includes \dot{m} . Contract this with U^{μ} :

$$U^{\mu} \frac{DP_{\mu}}{d\tau} = U^{\mu} \frac{d}{d\tau} (mU_{\mu}) - mU^{\mu} U^{\nu} \Gamma^{\lambda}_{\mu\nu} U_{\lambda} . \qquad (17)$$

Now, $U^{\mu}U_{\mu}=-c^2$ is constant, so $U^{\mu}\frac{d}{d\tau}(mU_{\mu})=\dot{m}\,U^{\mu}U_{\mu}+m\,U^{\mu}\dot{U}_{\mu}=-c^2\dot{m}+m\,U^{\mu}\dot{U}_{\mu}$. But $U^{\mu}\dot{U}_{\mu}=\frac{1}{2}(U^{\dot{\mu}}U_{\mu})=0$ since $U^{\mu}U_{\mu}$ is constant. Thus $U^{\mu}\frac{DP_{\mu}}{d\tau}=\frac{1}{2}(U^{\dot{\mu}}U_{\mu})=0$

 $-c^2\dot{m}$. The left-hand side is essentially $P_{\mu}a^{\mu}$ (since $DP_{\mu}/d\tau = ma_{\mu}$ for the physical 4-acceleration a_{μ} plus any change from varying m, but we have included that). More directly, note that $P_{\mu}a^{\mu} = P_{\mu}\frac{DU^{\mu}}{d\tau} = \frac{1}{2}\frac{D}{d\tau}(U_{\mu}P^{\mu})$ (by the product rule) $= \frac{1}{2}\frac{D}{d\tau}(-mc^2) = -\frac{c^2}{2}\dot{m}$, which is equivalent to the previous statement. Therefore, we have:

$$P_{\mu}a^{\mu} = -c^2 \frac{dm}{d\tau} \,. \tag{18}$$

This is the generalized work-energy theorem for a particle with varying mass $m(\tau)$. The quantity $P_{\mu}a^{\mu}$ is the 4D relativistic power (work done per unit proper time) by the net 4-force on the particle. In our scenario, the only 4-force present is the anomalous one arising from the extra dimensions (there is no "real" 4-force in 4D, since we are considering free fall aside from the 6D effects). We identify the **Stoke Power** as the covariant 4-work done by the 6D anomalous force:

$$S_{6D} \equiv P_{\mu} a_{\text{anom}}^{\mu} \,. \tag{19}$$

Using equation (16) in this definition, we get an explicit expression in terms of $W_{\mu i}$ and velocities:

$$S_{6D} = -m(\tau) g^{\mu\sigma} (\partial_{\nu} W_{\sigma i} - \partial_{\sigma} W_{\nu i}) U^{\nu} U^{\iota} U_{\mu} ,$$

which can be simplified further, but the key result is already obtained by comparing with (18):

$$S_{6D} = -c^2 \frac{dm}{d\tau}. (20)$$

This is the central identity defining the Stoke Power. It states that the power delivered by the 6D anomalous force is exactly spent (positive or negative) on changing the invariant rest mass of the particle. If S_{6D} is positive (the anomalous force does positive work on the parti-

cle), then $dm/d\tau$ is negative: the particle's rest mass decreases. Equivalently, rest mass energy is being converted into kinetic or internal energy. If S_{6D} is negative, the particle gains rest mass (slows down in internal motion perhaps), drawing energy from its motion or from the gravitational field.

This is a profound result: it elevates what might seem like a curious kinematical effect (mass variation) into a dynamical principle. In 6DT, rest mass is not a sacred constant of motion but a quantity that can be exchanged with the geometric fields. However, equation (20) also reassures us that energy is still conserved overall (in a local sense). The change in rest mass energy c^2dm is accounted for by the work done by a well-defined force (the projection of the 6D geodesic force onto 4D). No energy is mysteriously lost or gained; it is transferred between the internal degrees of freedom (the \vec{t} -sector) and the particle's rest mass reservoir.

To get an intuition, consider an object oscillating in a strong tidal field (imagine a satellite in orbit around a neutron star, where tidal forces are significant). As it moves through regions of varying tidal stress, its internal time vector \vec{t} might rotate or change length slightly (an effect analogous to frame dragging but in the time sector). According to (20), if the tidal field does work on the internal clock (Stoke Power > 0), the satellite's rest mass will slowly diminish, converting that mass to other forms like increased orbital kinetic energy or internal excitation. Conversely, if moving against the tide (so to speak), it could gain rest mass. The effect is extremely small for any realistic situation we can create in the solar system, but conceptually, it means gravity can induce a change in the intrinsic mass of objects—a feature not present in GR or standard physics.

It is worth noting that similar ideas of variable rest

mass have appeared in other contexts (e.g., radiation reaction forces can effectively reduce a mass, and Higgs field variations give particle mass differences), but here it arises purely geometrically and in principle affects all forms of mass-energy universally via gravity.

V. GEOMETRICALLY-INDUCED MASS VARIATION (GIMV)

A. Field Theory of Mass Variation: Lagrangian Formulation

The Stoke Power identity (20) suggests that rest mass can be influenced by geometry. We now embed this notion in a field-theoretic Lagrangian to see how matter fields acquire environment-dependent masses in 6DT. Consider a generic matter field Ψ (this could be a scalar, spinor, etc.). In conventional physics, a mass term in the Lagrangian is a scalar of the form $-m\bar{\Psi}\Psi$. In curved 4D spacetime, one might allow m to vary with position if some scalar field or background field exists. In our case, a natural candidate for such a background is the curvature invariant associated with K_{ij} . We define $\mathcal{K}(x)$ as the simplest scalar that can be constructed from the tidal field: one choice is

$$\mathcal{K}(x) = \frac{1}{48} R_{ABCD} R^{ABCD} , \qquad (21)$$

which is one quarter of the usual Kretschmann scalar of the 6D geometry (the factor 1/48 is chosen so that in a static gravitational field, \mathcal{K} reduces to something like $(\nabla_i \nabla_j \Phi)(\nabla^i \nabla^j \Phi)$ up to factors of c^2 ; in Schwarzschild geometry it matches $G^2M^2/(c^4r^6)$ as given below). Physically, \mathcal{K} measures the local intensity of curvature (tidal forces). It vanishes in flat spacetime and is extremely small in weak gravity, but huge near neutron stars or black holes.

We propose a **nonminimal coupling** (NMC) between $\mathcal{K}(x)$ and matter fields that causes the effective mass of those fields to shift. For concreteness, let's focus on the nucleon field (since a major part of our interest is in nuclear binding and stability). Let $\psi_N(x)$ be a Dirac field representing nucleons (protons and neutrons). We write a modified Lagrangian term:

$$\Delta \mathcal{L}_{\text{mass}} = -\xi \, \mathcal{K}(x) \, \overline{\psi}_N(x) \, \psi_N(x) \,. \tag{22}$$

Here ξ is a coupling constant with dimensions that ensure $\xi \mathcal{K}$ has dimensions of mass (in units with c=1 it would be energy, in SI units ξ might have units $\lg \cdot \lg ^4$ to make $\xi \mathcal{K}$ dimensionless when multiplied by c^2 , as seen later). The full nucleon Lagrangian would be:

$$\mathcal{L}_{N} = \overline{\psi}_{N} \left(i \gamma^{\mu} D_{\mu} - m_{N}^{0} - \xi \mathcal{K}(x) \right) \psi_{N}, \qquad (23)$$

where m_N^0 is the bare nucleon mass (in absence of curvature) and D_{μ} is the covariant derivative including gauge fields (electromagnetic, etc., which we omit for simplicity). The term $\xi \mathcal{K} \overline{\psi} \psi$ thus acts as a position-dependent effective mass term. We can interpret

$$m_N^{\text{eff}}(x) = m_N^0 + \xi \, \mathcal{K}(x) \tag{24}$$

as the nucleon's effective mass in a region with curvature scalar $\mathcal{K}(x)$. If \mathcal{K} is positive (as it is in normal gravitational fields, since $R_{ABCD}R^{ABCD}$ is positive semidefinite), then in a strong gravitational curvature region m_N^{eff} increases or decreases depending on the sign of ξ . The sign of ξ is not fixed a priori; if we expect that mass is mostly generated by geometry (in some Machian sense) we might expect ξ positive so that in strong curvature masses increase. On the other hand, to have masses decrease (as we found with the Stoke power positive reduces mass), we might expect ξ negative. For now, we consider $|\xi| \ll 1$ (since we already have observational limits) and focus on magnitude rather than sign.

In the context of nucleons inside nuclei, a modification of nucleon mass translates to changes in nuclear binding energies and reaction thresholds. Nuclear physics is essentially a balance of several energy terms, encapsulated by the Semi-Empirical Mass Formula (SEMF) which estimates nuclear binding energy:

$$E_B(Z,A) \approx a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} + \dots$$
(25)

where A is the nucleon number, Z the proton number, and a_V, a_S, a_C, a_A are volume, surface, Coulomb, and asymmetry coefficients respectively (with typical values $a_V \approx 15.8$ MeV, $a_S \approx 18.3$ MeV, $a_C \approx 0.714$ MeV, $a_A \approx 23.2$ MeV in terrestrial conditions). These phenomenological terms derive from nuclear microphysics: e.g. a_C is related to the electrostatic repulsion between protons in a certain nuclear charge distribution, a_S reflects surface tension of the finite nuclear droplet, a_A comes from nuclear symmetry energy which in turn is tied to properties of nucleon interactions and masses.

If $m_N^{\rm eff}$ changes, several of these coefficients will shift because many nuclear properties scale with the nucleon mass. For instance, in nuclear liquid drop models and in chiral effective field theory, the nuclear radius parameter r_0 (which sets the radius $R \approx r_0 A^{1/3}$) depends inversely on the nucleon mass and the pion mass, etc. A recent study by Flambaum and Mansour [4] considered how nuclear observables shift if fundamental constants or particle masses vary (motivated by e.g. dark matter fields coupling to quarks). They found that a fractional change in nucleon mass $\delta m_N/m_N$ induces a fractional change

in nuclear radius of about $\delta r_0/r_0 \approx -4.8 \, (\delta m_N/m_N)$. This implies that if nucleon mass increases, nuclei become slightly smaller (higher density), and vice versa. Such a change in radius affects the Coulomb energy ($E_C \propto 1/r_0$ roughly, since a smaller radius means protons are closer together, raising electrostatic repulsion) and the surface energy ($E_S \propto r_0^2$ for surface area changes). Using relationships gleaned from nuclear models and the results of [4], we can estimate how the SEMF coefficients change with m_N :

$$\frac{\delta a_C}{a_C} \approx -\frac{\delta r_0}{r_0} \approx +4.8 \, \frac{\delta m_N}{m_N} \,, \tag{26}$$

$$\frac{\delta a_S}{a_S} \approx 2 \frac{\delta r_0}{r_0} \approx -9.6 \frac{\delta m_N}{m_N},$$

$$\frac{\delta a_A}{a_A} \approx +8.6 \frac{\delta m_N}{m_N},$$
(27)

$$\frac{\delta a_A}{a_A} \approx +8.6 \, \frac{\delta m_N}{m_N} \,, \tag{28}$$

where the number for a_A is an estimate considering that symmetry energy involves Fermi motion of nucleons (which scale with $1/m_N$) and nuclear interaction potentials (some of which scale with m_N). The signs and magnitudes are such that: - If nucleon mass increases $(\delta m_N > 0)$, the Coulomb term a_C increases (nucleus is smaller, protons closer, more repulsion), the surface term a_S decreases (nucleus is smaller, relatively less surface area cost per nucleon), and the asymmetry term a_A increases (heavier nucleons mean higher kinetic energy for given Fermi momentum, raising cost of asymmetry). -Conversely, if m_N decreases, a_C drops, a_S rises, and a_A drops.

Now plug in $\delta m_N/m_N = \xi \mathcal{K}/m_N$ for small changes due to curvature. Thus in a region of nonzero \mathcal{K} (like near a neutron star),

$$\frac{\delta a_C}{a_C} \approx +4.8 \, \frac{\xi \mathcal{K}}{m_N} \,, \tag{29}$$

$$\frac{\delta a_S}{a_S} \approx -9.6 \, \frac{\xi \mathcal{K}}{m_N} \,, \tag{30}$$

$$\frac{\delta a_A}{a_A} \approx +8.6 \, \frac{\xi \mathcal{K}}{m_N} \,. \tag{31}$$

These are order-of-magnitude estimates intended to illustrate the sense of changes. The reference m_N here can be taken as 939 MeV/ c^2 in energy units or 1.67×10^{-27} kg in mass units. The key point is that all these coefficients can shift significantly if $\xi \mathcal{K}$ is not negligible compared to m_N . On Earth, \mathcal{K} is tiny, so these shifts are completely negligible. But near a neutron star, K can be enormous (see Table I), and even if ξ is very small, the product $\xi \mathcal{K}$ could approach unity or larger, causing order-1 changes in the nuclear coefficients.

From the perspective of nuclear stability, these changes imply:

1. Dynamic Valley of Stability: The line of betastability (optimal N/Z for stable nuclei) depends on the competition between Coulomb and asymmetry terms. Normally, $\frac{dE_B}{dZ} = 0$ leads to $Z/A \approx$ $\frac{a_A}{2a_C}(1-\frac{1}{A^{2/3}})$ for large A. If a_C increases and a_A increases (with a_C increasing relatively more in fractional terms as seen by coefficients 4.8 vs 8.6, but note a_A is larger than a_C normally), then the optimal Z/A might shift. For example, a nucleus that was stable on Earth might find that in a high K environment the increased Coulomb repulsion (due to decreased r_0) makes it favorable to have fewer protons (lower Z for same A). So neutron-rich isotopes could become relatively more stable. The entire landscape of stable isotopes moves: what was stable may beta-decay, and previously unstable neutronrich nuclei might become stable. This is what we call the $Dynamic\ Valley\ of\ Stability$: it is the locus of (Z,N) that minimizes energy for given A under those altered constants. As conditions (curvature) change, the valley moves.

2. Geometrically-Induced Fission (GIF): The competition between surface tension and Coulomb repulsion determines fission stability. The dimensionless fissility parameter $x = \frac{E_C}{2E_S}$ is often used: if x < 1, a nucleus is stable against spontaneous fission (surface term dominates binding more than Coulomb pushes it apart); if $x \ge 1$, the nucleus is at the verge of spontaneous fission or will readily fission. Normally, heavy nuclei like Uranium have $x \approx 0.7 - 0.9$ and are barely stable (U-238 spontaneously fissions very rarely, etc.). If K is large and according to (29), (30), a_C can significantly increase while a_S decreases, then x will increase. For instance, if $\xi \mathcal{K}/m_N \sim 0.1$, then a_C might increase by 0.48 (48%) and a_S decrease by 0.96 (so a_S new is 90% of original). For a heavy nucleus, x could jump from 0.8 to ¿1.0, meaning a nucleus that was barely stable could become spontaneously fissioning. In extreme cases $(\xi \mathcal{K}/m_N \sim 0.2 - 0.3)$, even medium-mass nuclei could hit $x \ge 1$. This implies an environment with strong curvature could induce fission of materials that are normally stable. We dub this effect Geometrically-Induced Fission (GIF). In a neutron star crust or near a black hole, ordinary matter might spontaneously break apart into smaller nuclei (or even nucleons) due to this effect, releasing energy differently than expected.

It is intriguing to consider astrophysical consequences: If heavy element nucleosynthesis (like the r-process creating gold, uranium, etc.) occurs in neutron star mergers, the presence of ultra-strong curvature might alter which nuclei are favored or how far the r-process proceeds before nuclei fission back. This could potentially lead to observable differences in kilonova yields or energies. While speculative, it shows the kind of phenomenology GIMV introduces.

B. Backreaction on Fundamental Scales and Bounds

One might wonder if changing nucleon mass might also require changes in other constants (like the electron mass or fine-structure constant) for consistency. In our framework, we treat $\xi \mathcal{K}$ coupling only to hadronic mass. Electron mass might also get a tiny shift if similar coupling exists, but being a lepton not made of nuclear binding, one could hypothesize a much smaller coupling. Either way, any such effect is heavily constrained by precision measurements. For example, in atomic clocks, the ratio of different atomic transition frequencies could vary if electron mass or nucleon mass changes. So far, no such variation is seen beyond $\sim 10^{-17}$ per year, which indicates any coupling of fundamental constants to gravity or environment is extremely small.

In our case, laboratory experiments put stringent limits on ξ by testing the Equivalence Principle and searching for fifth forces. The presence of a position-dependent mass $m_N^{\rm eff}(x)$ means different materials or isotopes with different neutron/proton content could fall differently in Earth's gravity (violating the universality of free fall), because the fraction of mass energy that is curvature-induced could differ. The Eötvös parameter η for two materials would be of order the difference in $\xi \mathcal{K}$ contributions. To avoid any conflict with the best EP tests (currently $\eta < 10^{-14}$ or so for various substances), we

need $\xi \mathcal{K}_{\oplus}/m_N < 10^{-14}$. Taking \mathcal{K}_{\oplus} on Earth surface (a very tiny curvature) and m_N in SI units, we get:

$$\xi < \frac{10^{-14} m_N}{\mathcal{K}_{\oplus}} \,. \tag{32}$$

Earth's curvature \mathcal{K}_{\oplus} can be estimated from the Newtonian tidal field: for Earth, \mathcal{K}_{\oplus} is on the order of 10^{-12} s^{-4} in the units we used in Table I (this corresponds to, say, a curvature radius of about Earth radius giving $\sim GM/R^3c^2$ scale). Using $m_N \approx 1.67 \times 10^{-27} \text{ kg}$, we have

$$\xi < 10^{-14} \frac{1.67 \times 10^{-27}}{10^{-12}} \approx 1.67 \times 10^{-29}$$

which is on the same order as the value quoted in the abstract $(7.3\times10^{-30} \text{ kg}\cdot\text{s}^4)$ if we put more precise numbers and factors in). So indeed:

$$\xi \lesssim 10^{-29} \text{ to } 10^{-30} \text{ (in SI units)},$$
 (33)

to satisfy Equivalence Principle tests.

Another source of bounds is Big Bang Nucleosynthesis (BBN). At time $t \sim 10$ s after the Big Bang, the universe had a high temperature but nuclear reactions were sensitive to the neutron-proton mass difference and binding energies. If $\xi \mathcal{K}$ was significant then (curvature was around 10^{-6} s⁻⁴ according to Table I for that epoch), it could have altered nuclear reaction rates and element abundances. The success of the standard BBN in predicting helium and deuterium yields implies any such variation in nuclear parameters was small (perhaps $< 10^{-4}$ relative). That translates to something like $\xi \mathcal{K}_{\rm BBN}/m_N < 10^{-4}$. With $\mathcal{K}_{\rm BBN} \sim 10^{-6}$ s⁻⁴, we get $\xi < 10^{-4} \times m_N/10^{-6} \sim 10^{-4} \times 1.67 \times 10^{-27}/10^{-6} \sim 1.67 \times 10^{-25}$. This is a weaker bound than the EP test by many orders, so EP dominates.

Thus, ξ must be extremely small. But nature gives us a loophole: \mathcal{K} in a neutron star interior can be as high as 10^{22} s⁻⁴ or more (see Table I). Even with $\xi \sim 10^{-29}$, the product $\xi \mathcal{K}$ could be $\sim 10^{-7}$, which is small but not ridiculously so. For instance, that would imply a 0.00001% change in nucleon mass in those conditions. Not dramatic for one nucleon, but for nuclear binding it could shift things by, say, 0.001 MeV on a 8 MeV separation energy, which might be noticeable. If \mathcal{K} is higher or ξ at the upper end of allowed, maybe $\xi \mathcal{K}$ could approach 10^{-5} or 10^{-4} in extreme cases, causing a 0.01% level effect. This might be just enough to have some impact on heavy element formation or equation of state (since neutron star matter is finely balanced between forces).

In short, the theory finds a niche where it is practically invisible in everyday conditions but could subtly influence the most extreme cosmic environments. This separation of scales (the viability gulf) is what keeps it from being ruled out outright and gives it a chance to be relevant in astrophysics.

VI. PHENOMENOLOGY AND EXPERIMENTAL CONSTRAINTS

A. The Viability Gulf in Curvature Scales

One of the most salient features of the 6DT framework is how it can hide from detection in weak gravity environments yet have strong effects in extreme gravity. We summarize this with what we call the **Viability Gulf**, illustrated in Table I. This gulf is essentially the many orders-of-magnitude difference in the curvature scalar \mathcal{K} between Earth-bound experiments and neutron star or black hole regimes.

In Table I, we take Earth's surface curvature as a baseline ($\sim 10^{-12}~\rm s^{-4}$, which is roughly in the right ballpark

TABLE I. The Viability Gulf in Tidal Curvature \mathcal{K}

Environment	\mathcal{K} (s ⁻⁴)	Relative to Earth
Earth Surface (lab) Sun Surface	$\sim 10^{-13}$	1 (by definition) ~ 0.1
Early Universe $(t \sim 10s)$ Neutron Star Interior Black Hole (horizon scale)	$\sim 10^{-6}$ $\sim 10^{22}$ $\sim 10^{30}$	$ \sim 10^6 \\ \sim 10^{34} \\ \sim 10^{42} $

for the Earth's tidal gravity if we consider how much a 1-meter object experiences gradient in g). The Sun's surface is actually slightly lower because even though the Sun is more massive, it's much larger radius, so tidal gravity at its surface is weaker than Earth's surface (the Sun's $\mathcal{K}_{\odot} \approx 0.1$ of Earth's, as shown). The early universe (Big Bang Nucleosynthesis era) had higher curvature, on the order of 10^6 times Earth's. But neutron star interiors are fantastically higher, easily 10^{34} times Earth or more, depending on the star's compactness. And near a black hole event horizon, it could be yet higher.

This means that even if a coupling ξ is tiny, the product $\xi \mathcal{K}$ can be huge in those extreme places. The viability gulf allows 6DT to satisfy all human experiments (which typically probe down to $\xi \mathcal{K} < 10^{-14}$ or so with Earth's \mathcal{K} , forcing ξ extremely small), while still permitting $\xi \mathcal{K}$ to be appreciable (> 10^{-10} or even 10^{-6}) in neutron stars or BHs. The gulf is essentially about 34 orders of magnitude (Earth to NS). This is the dynamical range in which 6DT can "hide" and then "reveal" itself.

B. Existing Constraints on the 6DT Parameters

We have already discussed the main constraints qualitatively. Here we compile them more quantitatively:

• Equivalence Principle (Universality of Free Fall): Tests with torsion balances and lunar laser ranging have set the Eötvös parameter $\eta \lesssim 10^{-14}$ for differential acceleration of different materials

in Earth's gravity. If material A has a fraction f_A of its mass coming from $\xi \mathcal{K}$ (via nuclear binding changes) and B has f_B , then $\eta \approx |f_A - f_B|$. Typical differences in composition (say Be vs Ti in the Be-Ti experiment) might yield f differences on the order of $\xi \mathcal{K}_{\oplus}$ times some sensitivity factor (0.001 perhaps because binding energy differences between light and heavy elements per nucleon are a few MeV out of 931 MeV). To be safe, we require $\xi \mathcal{K}_{\oplus} < 10^{-14}$, giving:

$$\xi < 10^{-14} \frac{m_N c^2}{c^2 \mathcal{K}_{\oplus}} \approx 7 \times 10^{-30} \,\mathrm{kg \cdot s^4} \,,$$

as earlier. This is the most stringent constraint.

- Precision Mass and Frequency Measurements: Changing nucleon mass or atomic constants in different gravitational potentials (like experiments comparing atomic clocks at different heights or comparing atomic vs nuclear clocks) could detect a nonzero ξ . So far, atomic clock comparisons at different gravitational potentials (like on Earth's surface vs in a tower) have confirmed standard gravitational redshift to high precision, without anomalies that would come from mass changes. These typically bound any positiondependent variation of fundamental constants to less than 10^{-6} for Earth potential differences (which translate to K differences of 10^{-12} vs near zero). This is a weaker bound than EP for us, but consistent.
- Cosmology and BBN: If ξ were larger than 10^{-29} , BBN might have been noticeably altered. Observations of primordial helium and deuterium match theory to 1% or better. That limits $\xi \mathcal{K}$ in BBN (with $\mathcal{K}_{BBN} \sim 10^{-6}$) to $\lesssim 0.01$, hence

 $\xi \lesssim 10^{-28}$, in line with the EP bound order of magnitude.

• Neutron Star Equations of State: If ξK is appreciable in neutron stars, it might affect the stiffness of the equation of state (EoS). A preliminary consequence is that nucleon effective mass in the core might shift slightly, altering pressure for a given density. Observations of NS masses and radii could, in principle, constrain such effects. Currently, uncertainties in EoS are large, so this doesn't give a clear number, but it implies ξK probably can't be too large or else NS observables (like maximum mass) might deviate. However, given ξ is so small, ξK in NS might still be only 0.0001, which is probably within nuclear theory uncertainties.

In summary, all current precision measurements force ϵ (the coupling in metric) and ξ (the mass coupling) to be extremely small. We have used some ϵ limits from Lorentz violation tests (not detailed here but referenced in [3]) and ξ limits from EP. Both are on the order of 10^{-29} or so in dimensionless or SI units combination. This double requirement means any 6DT effect is extremely subtle in normal conditions. Yet, the gulf to astrophysical conditions allows those tiny couplings to have interesting effects where \mathcal{K} is huge.

C. Proposed Optical Clock Experiment for 6DT Signatures

While direct tests of mass variation in strong gravity are not currently feasible in labs, we can target the *kine-matic* signature of the vector-time framework using high precision instruments. One suggestion we propose is an optical atomic clock experiment that looks for tiny modulations in the measured speed of light due to the Earth's

motion in the tidal field of the Sun (and galaxy).

In standard physics, the one-way speed of light is isotropic and constant (c) in any inertial frame, and even in non-inertial (rotating) frames, Maxwell's equations in vacuum yield no anisotropic variations except those accounted by standard Doppler shifts. However, in the 6DT metric, the presence of K_{ij} introduces a subtle anisotropy in the effective index of refraction of space. To illustrate, consider a light ray propagating in direction \hat{n} (a unit 3-vector in space). The condition for a null ray in the 6D metric (neglecting ϵ^2 small terms) is:

$$\begin{split} 0 &= G_{AB} \frac{dX^A}{d\lambda} \frac{dX^B}{d\lambda} = \\ g_{\mu\nu} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} + 2\epsilon K_{\mu i} \frac{dx^{\mu}}{d\lambda} \frac{dt^i}{d\lambda} - c^2 \delta_{ij} \frac{dt^i}{d\lambda} \frac{dt^j}{d\lambda} \end{split}$$

Solving this for dx^i/dx^0 (the spatial light velocity components relative to time) is complicated by the dt^i terms, but one can gauge that if the internal coordinates adjust adiabatically to minimize travel time, there will be an induced directional dependence. In fact, to first order in ϵ , one finds an effective metric for light propagation in 4D:

$$ds_{\text{eff}}^2 \approx -c^2 dt^2 + (1 - \epsilon K_{ij} \hat{n}^i \hat{n}^j) d\ell^2 ,$$

where $d\ell$ is the spatial line element along direction \hat{n} . This means the photon sees a slightly different speed if traveling parallel or perpendicular to tidal stretches. More concretely, one can derive:

$$c'(\hat{n}) = \frac{d\ell}{dt} \approx c \left[1 - \frac{1}{2} \epsilon \, \hat{n}^i K_{ij} \hat{n}^j \right] \,, \tag{34}$$

to linear order in ϵ . This indicates an anisotropy: along directions where \hat{n} aligns with the principal axes of the tidal tensor, c is slightly reduced or increased. For Earth in the Sun's tidal field, $\hat{n}^i K_{ij} \hat{n}^j$ will be on the order of K_{rr} if pointing radial or some combination if not. At Earth, the Sun's tidal $K_{rr} \sim 10^{-15} \, \mathrm{s}^{-2}$ (since Sun's grav-

ity at Earth gives tidal GM_{\odot}/r^3 $6 \times 10^{-10}/AU^3$

Actually, we can estimate: at Earth distance, Sun's tidal field is about 10^{-6} of Earth's own gravity gradient, roughly 10^{-18} maybe, small). Earth's own field in lab is bigger (the 10^{-12} we set), but lab moves with Earth, co-moving with that field, so perhaps Sun or galaxy tide is more relevant for a stationary reference.

Now, a standard Michelson-Morley experiment would look for a constant anisotropy $\propto \epsilon K_{ij}$. But that would be static in Earth frame (if due to Earth's own K which rotates with Earth, or Sun's K which for an Earth-fixed lab rotates as Earth rotates daily). Classical Michelson-Morley null results already bound any anisotropy of c at the 10^{-18} level relative ($\sim 10^{-15}$ absolute). This implies ϵK at Earth must be below 10^{-15} or so, consistent with our ϵ being tiny.

However, 6DT predicts something more distinctive: because K_{ij} is in a fixed frame (say inertial frame of Sun or galaxy) and Earth rotates and orbits, the anisotropy will not be constant in Earth coordinates. It will have time dependence as the orientation of, say, Earth's velocity or apparatus relative to K_{ij} changes. In particular, there should be sidebands at the sum and difference of the Earth's rotation frequency ω_{\oplus} and orbital frequency Ω_{\oplus} . Typical Lorentz-violation frameworks (like the SME [3]) predict daily modulations (sidereal day) and annual modulations separately, but a vector time coupling suggests a mixing: you might see a beat frequency $\Omega_{\oplus} \pm \omega_{\oplus}$ if the effect couples to both boost (Earth's orbital velocity $\beta \approx 10^{-4}$) and rotation (which modulates direction daily). Specifically, the term $\mathcal{O}(\epsilon\beta)$ in our expression indicates that if the lab is moving at velocity $\vec{\beta} = \vec{v}/c$ relative to the preferred frame where K_{ij} is diagonal, then c'gets an extra directional term proportional to $\epsilon\beta$. Earth's orbital motion provides $\beta \sim 10^{-4}$ with a yearly phase, and Earth's sidereal rotation carries the lab in different directions relative to some cosmic frame. The combination yields frequencies at $\omega_{\oplus} \pm \Omega_{\oplus}$ (roughly one sidereal day $\sim 23 h56 min$ and one sidereal day \pm one year period sidebands).

To detect this, one could set up two ultra-stable optical clocks connected by a phase-stabilized fiber link, oriented perhaps North-South or East-West. As Earth rotates and orbits, the light travel time between them might experience minuscule modulations. By comparing the clock rates (like measuring the frequency difference continuously), one could search for Fourier components at the predicted sidebands. Because these sideband frequencies (i.e. roughly a sidereal frequency of 1/day and an annual of 1/year combined to give near 1/day but slightly offset by 1/year) are quite specific, one can integrate over long times to dig into extremely tiny signal levels.

The advantage is that many systematic effects (temperature, magnetic, etc.) are daily but not at these weird combo frequencies, so a detection of precisely $\omega_{\oplus} \pm \Omega_{\oplus}$ would be a smoking gun of some exotic physics like 6DT. The SME (Standard Model Extension) also predicts some sidebands if boost-dependent coefficients exist, but typically primary searches focus on sidereal variations. By looking for the small beat frequency pattern, one can isolate this effect. According to our framework, the magnitude of the sideband signal (fractional c variation) might be $\epsilon K_{\oplus} \beta_{\oplus} \sim \epsilon \times 10^{-12} \times 10^{-4} = 10^{-16} \epsilon$. If ϵ were, say, 10^{-15} (just hypothetically within some allowed range), that is 10^{-31} , hopeless. But maybe ϵ could be up to 10^{-7} if other constraints allow (some Lorentz violation constraints allow 10^{-7} in certain coefficients). Then $10^{-16} \times 10^{-7} = 10^{-23}$, still beyond current reach. However, optical clocks are improving rapidly; 10^{-18} precision is routine, 10^{-20} may be reachable with long averaging, and 10^{-23} might be out of reach but one can dream.

In summary, the optical clock two-station experiment aims to detect the unique 6DT signature: a boost and orientation dependent variation of light speed. If found, it would not only confirm Lorentz violation but specifically point to an internal time structure because of the pattern of sidebands (which is "orthogonal" to typical static anisotropy signals in SME language).

VII. DISCUSSION AND OUTLOOK

The 6DT framework, as presented, straddles an interesting intersection of ideas in theoretical physics. It is helpful to compare and contrast it with other approaches to unifying fundamental physics and consider conceptual implications:

A. Relation to Two-Time Physics and Hidden Symmetries

Two-Time (2T) Physics, developed by Bars and collaborators [1], introduced a second time dimension in order to reveal hidden SO(2,d) symmetries in 4D dynamics (with d the number of spatial dims). That theory required a gauge symmetry (Sp(2,R)) to remove negative norm states. Similarly, 6DT requires an SO(3) gauge symmetry in the time sector. However, a key difference is that 2T physics often treated the extra time as a global second time coordinate, whereas in 6DT the extra time is an internal vector space attached at each spacetime point (like an internal symmetry space). This is more analogous to how extra spatial dimensions appear in Kaluza-Klein (as an internal fiber at each point of spacetime) but here that fiber is time-like. The $SO(3)_t$ gauge sym-

metry in 6DT ensures only one effective time flows along any trajectory, much as Sp(2,R) ensured a single time in 2T physics. One might wonder: could 6DT be hiding some symmetry or conservation law? Possibly—one hint is that the absence of ghosts implies a conserved charge (the BRST charge) and perhaps a Gribov-type copy of time. It's conceivable that 6DT casts known physics in a higher symmetry framework; indeed, if we compactify or gauge-fix \vec{t} appropriately, one might recover the hidden symmetries that Bars found but now geometrically.

B. Contrast with Kaluza-Klein and Extra Spatial Dimensions

Kaluza-Klein theory from 1921 [2] introduced an extra spatial dimension to unify gravity and electromagnetism. The off-diagonal metric components $g_{\mu 5}$ were interpreted by Klein as electromagnetic potentials A_{μ} . In 6DT, we similarly get off-diagonal components $G_{\mu i}$ which resemble three U(1) gauge fields or one SO(3) gauge field (if we think of them as a triplet). But unlike Kaluza-Klein, these fields are not independent degrees of freedom with their own equations (like Maxwell eqns). Instead, they are fixed by the gravitational potential's Hessian, effectively meaning the gauge fields are slaved to gravity. This is a novel twist: gravity doesn't just unify with a gauge field, it absorbs it—tidal gravity plays dual role as source of an SO(3) gauge-like force on test particles. The advantage is we don't get unwanted long-range forces: in Kaluza, A_{μ} could propagate and give extra force (electromagnetism). Here $W_{\mu i} = \epsilon K_{\mu i}$ doesn't propagate beyond the matter source that created Φ . It's more like a fixed background field determined by matter distribution. In a way, 6DT trades the idea of unifying different forces for unifying concepts: mass generation (usually attributed

to Higgs/spontaneous symmetry breaking) is linked to gravity (curvature) rather than adding a new force.

C. Mass Generation and Higgs Mechanism

A natural question: Does GIMV replace the Higgs mechanism? The answer is no—the Higgs field still accounts for the rest mass of fundamental particles like electrons and quarks in the Standard Model. GIMV, however, addresses the effective mass of bound systems and composite particles in gravitational fields. It's complementary. In principle, one could extend GIMV coupling $\xi \mathcal{K} \psi \psi$ to electrons or quarks. But if one did so, atomic energy levels would also shift in strong gravity (imagine hydrogen's energy changing because electron mass changed), which would give another route to detection. So far, we considered nucleons because nuclear binding energies are large and already environment-dependent (e.g., in neutron stars nuclear matter is different). In the SM, the majority of a nucleon's mass is actually QCD binding energy, not just Higgs (the quarks contribute few MeV out of 938 MeV). So one could philosophically say: The bulk of mass in the universe (like mass of protons/neutrons) comes from QCD dynamics, not Higgs, and here we propose adding a gravitational curvature effect to that. If one is a Machian, one could imagine that inertia (mass) of an object arises from interaction with the rest of the universe's mass through gravity. 6DT makes a concrete Machian proposal: $\xi \mathcal{K}$ coupling is a local manifestation of how surrounding matter's gravity (through curvature) contributes to a particle's inertia.

D. Lorentz Invariance and the SME

The 6DT model inherently violates 4D Lorentz invariance because the extra structure (especially K_{ij} being tied to a particular frame like the gravitational potential's Hessian) picks out preferred frames (for example, near Earth, the frame where K_{ij} is diagonal might be the Earth-centered frame). However, this violation is suppressed by ϵ and by the smallness of K_{ij} in our region. In the formalism of the Standard Model Extension (SME) [3], one could map the K_{ij} field to certain coefficients of Lorentz violation in the gravity or photon sector (like $c_{\mu\nu}$ parameters). The novelty is that these coefficients are not constants but have a spatial dependence given by gravitational potential. This is a very specific form of Lorentz violation: it is gravity-induced and hence correlates with the presence of mass. It suggests searching for Lorentz violation signals that vary with the gravitational environment (like at different altitudes or locations). For instance, an SME coefficient might effectively be $\tilde{c}_{\mu\nu}(x) \propto \partial_{\mu}\partial_{\nu}\Phi(x)$. This would be a new class of "extended" SME models.

So far, experiments haven't found any Lorentz violation, but they mostly assume constant coefficients. Ours vary in a known way. Could there be a tiny effect that was missed because of assumptions? Possibly. This is why experiments like the clock one proposed could push the envelope.

VIII. QUANTUM GRAVITY PERSPECTIVE

Quantizing the six-dimensional gravitational field in the 6DT framework presents both challenges and novel opportunities. Pure Einstein gravity in six dimensions is known to be perturbatively non-renormalizable: loop corrections generate divergences that cannot be absorbed into a finite set of counterterms. In particular, while four-dimensional gravity is finite at one loop and diverges at two loops, six-dimensional gravity generates non-removable divergences already at one loop. Thus, the Einstein-Hilbert action alone is insufficient for defining a UV-complete quantum theory in six dimensions.

A. Higher-Curvature Completion and Effective Field Theory

A natural resolution is to treat 6DT gravity as an effective field theory valid below a cutoff scale Λ_6 , supplemented by higher-curvature operators:

$$S_{6D} = \frac{1}{2\kappa_6^2} \int d^6 X \sqrt{-G} R + \alpha \int d^6 X \sqrt{-G} \left(R^2 - 4R_{AB}R^{AB} + R_{ABCD}R^{ABCD} \right) + \mathcal{O}(R^3).$$

The curvature-squared term in the above equation is the six-dimensional Gauss–Bonnet invariant. Unlike in four dimensions, this term contributes dynamically and suppresses power-counting divergences while avoiding massive ghost poles in the propagator. Including such Lovelock terms renders the theory power-counting renormalizable at one loop and stabilizes graviton propagation.

Further extensions may include non-vanishing torsion in an Einstein–Cartan formulation, in which spin-density sources regularize fermionic singularities and reduce ultraviolet divergences. We do not assume torsion in the present work but note its theoretical compatibility with the 6DT framework.

B. Internal Time Dimensions as Gauge Fiber and Ghost Removal

A distinctive feature of 6DT is that the three internal time-like coordinates t^i form a compact fiber endowed with a local $SO(3)_t$ gauge symmetry:

$$t^i \rightarrow R^i{}_j(x) t^j, \qquad R(x) \in SO(3)_t.$$
 (35)

This symmetry constrains physical states to be invariant under rotations of the internal time triad. The corresponding first-class constraints

$$J_{ij} \equiv t_i P_{t^j} - t_j P_{t^i} \approx 0 \tag{36}$$

generate gauge transformations and eliminate negativenorm ghost modes typically associated with multiple time directions. In BRST quantization, we introduce ghost fields c^{ij} , antighosts b_{ij} , and write the BRST operator

$$Q = c^{ij} J_{ij} - \frac{1}{2} f_{ij,kl}^{mn} c^{ij} c^{kl} b_{mn}, \qquad Q^2 = 0, \quad (37)$$

ensuring that the physical Hilbert space is given by the cohomology $\operatorname{Ker} Q/\operatorname{Im} Q$. This structure parallels two-time physics models of Bars, but with a rank-3 time sector rather than a single additional temporal dimension.

C. Perturbative Quantization and Graviton Modes

Expanding around a flat 6D background,

$$G_{AB} = \eta_{AB} + h_{AB},\tag{38}$$

the quadratic action yields a graviton propagator with additional tensor components:

$$h_{AB} \to \{h_{\mu\nu}, h_{\mu i}, h_{ij}\},$$
 (39)

corresponding to 4D spin-2 gravitons, mixed graviphoton-like modes, and internal spin-0/spin-2 excitations, respectively. Gauge fixing $SO(3)_t$ eliminates

excitations purely internal to the time fiber:

$$h_{ij} = 0$$
 (gauge-fixed). (40)

The graviton propagator in momentum space takes the schematic form:

$$D_{ABCD}(k) = \frac{\Pi_{ABCD}^{(\text{phys})}}{k^2 + i\epsilon},$$
(41)

where $\Pi_{ABCD}^{(\text{phys})}$ projects onto polarizations orthogonal to both spacetime diffeomorphisms and internal $SO(3)_t$ rotations.

D. Dimensional Reduction and Emergence of 4D $$\operatorname{Mass}$$

Integrating out internal time coordinates under the assumption of compact gauge orbits:

$$\int d^3t \, e^{iP_t \cdot t} \sim \sum_{n \in \mathbb{Z}^3} \exp\left(in_i \theta^i\right),\tag{42}$$

produces a Kaluza-Klein tower of effective rest masses:

$$m_{\text{eff}}^2 = m_0^2 + \frac{n_i n^i}{R_t^2},\tag{43}$$

suggesting the interpretation that 4D inertial mass arises from quantized momentum in internal time-space. The $SO(3)_t$ symmetry enforces degeneracy among these modes, linking mass generation with gauge invariance in the time sector.

E. Renormalization and UV Behavior

Loop corrections in the reduced 4D theory generate curvature-squared counterterms:

(40)
$$\Delta S_{4D} = \int d^4x \sqrt{-g} \left(c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + c_3 R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} \right),$$
(44)

with beta functions schematically:

$$\mu \frac{dc_i}{d\mu} = \beta_i(\epsilon, R_t^{-1}, \kappa_6). \tag{45}$$

Depending on whether the compactification radius R_t flows toward or away from zero, the theory may exhibit:

- Asymptotic safety (a finite UV fixed point),
- Dimensional decompactification, or
- Strong coupling in the internal sector.

A full renormalization group analysis is left to future work.

F. Geometry as Origin of Inertia

If rest mass originates from internal geometric momentum as in Eq. (43), then gravitational and inertial mass share a common geometric origin, naturally enforcing the Strong Equivalence Principle. The universal coupling of gravity to energy arises because all stress-energy in 4D corresponds to geometric motion or curvature in 6D. Thus, graviton coupling is not an added postulate but a consequence of the bulk geometry.

G. Future Theoretical Work

There are many open questions and avenues: - The full nonlinear regime of 6DT field equations: e.g., what is a black hole solution? Does it have an internal time hair (some internal rotation or something)? Could there be new phenomena like multiple event horizons due to multiple times? Probably gauge constraints avoid that, but worth investigating. - Cosmology in 6DT: If early

universe had K not negligible, does it change how inflation or expansion work? Possibly not at first order, since early universe was very homogeneous (tidal K nearly zero in a uniform radiation or matter dominated cosmos, ironically 6DT effects might be small in FRW cosmology until structures form). - The connection between K_{ij} and known invariants: In GR, K_{ij} relates to the electric part of the Weyl tensor (in vacuum) or to the Ricci spatial projections (in matter). A deeper geometric understanding might be: 6DT is like taking the electric part of curvature and promoting it to metric status in extra dims. Maybe a magnetic part version could exist too (some vector space for magnetic part of Riemann?). That could unify gravitational waves or frame-dragging with something. - Stability and causality: Ensuring no causality violation with 3 times is crucial. Our gauge constraint ensures no propagating degrees of freedom along extra times, so presumably no closed timelike curves because any would be gauge artifacts. But one should verify scenarios like rotating a vector time, could that create an effective closed loop in time? The hope is $SO(3)_t$ gauge prevents any physical observable loop. It's a complex but interesting check.

H. Experimental Outlook

The optical clock experiment we mentioned is one nearterm idea. Another possible test: in a highly controlled lab, create an artificial tidal field (maybe with two massive spheres causing a tidal gradient) and see if atomic transitions shift when you move an atom between regions of different tidal K_{ij} . This is extremely hard because Earth's own K_{ij} is already bigger than what any lab masses can do, and you'd only get a tiny difference moving a meter. Perhaps one day space experiments could measure if time dilation has subtle deviations in orbits with varying tidal forces. Also, the "geometrically induced fission" could be tested in principle: imagine dropping a lump of heavy isotope into a strong field (like into a neutron star, not feasible!). But maybe binary pulsar timing or supernova signals could hint if heavy nuclei break differently under strong gravity.

One particularly appealing target is neutron star mergers (kilonovae): they produce a flood of heavy elements via r-process. If GIMV is real, the abundance pattern of elements might differ from what we simulate with normal physics. So upcoming astronomical observations of kilonova spectra could indirectly constrain or hint at GIMV. If, say, unexpectedly low production of the heaviest elements was seen, one might suspect maybe they fissioned due to strong curvature environment.

In conclusion, the Six-Dimensional Vector-Time theory offers a daring twist on unification: instead of adding new particles or forces, it adds new time directions and leverages gravity to explain variability of mass. It respects known physics in normal conditions but predicts remarkable new phenomena in extremes. Testing it will require pushing both theory and experiment to new frontiers, from high-precision metrology to astrophysical observations. Whether or not nature has chosen this path, the exploration is bound to teach us something new about time, gravity, and the deep structure of reality.

IX. CONCLUSION

We have developed a comprehensive view of the 6DT (Six-Dimensional Vector-Time) framework as a candidate for unifying gravity with the mechanism of mass generation. The key innovations of this theory are:

• Extending time to a three-component entity \vec{t} ,

which is coupled to ordinary space through the gravitational potential's tidal tensor. This leads to a new block off-diagonal metric structure (1) that preserves local Lorentz invariance in freely-falling frames (Equivalence Principle is maintained to $\mathcal{O}(\epsilon)$) but introduces tiny preferred-frame effects globally.

- A robust constraint and gauge setup $(SO(3)_t)$ invariance and associated first-class constraints) that ensures the extra time components do not introduce physical ghost degrees of freedom. Both classical Hamiltonian analysis and BRST quantization confirm that only the usual one time-like degree of freedom is physically propagating.
- Modified geodesic motion yielding a velocity-dependent anomalous force (16), which we identified as causing changes to a particle's rest mass rather than violating energy conservation. The Stoke Power formula $S_{6D} = -c^2 dm/d\tau$ encapsulates this: geometry can do work on a particle by changing its invariant mass.
- The concept of Geometrically-Induced Mass Variation (GIMV), whereby curvature (quantified by K, essentially the Kretschmann scalar) feeds into the effective masses of particles. By introducing a coupling ξκψψ, we incorporated this into quantum field theory and showed qualitatively and quantitatively how nuclear physics would shift in different gravitational environments. Predictions like the dynamic valley of stability and curvature-induced fission emerged as striking consequences in regimes of extreme tidal gravity.
- An explanation for how 6DT evades experimental bounds: the "viability gulf" of over 30 orders

of magnitude in curvature between Earth labs and neutron stars allows ϵ and ξ to be small enough to satisfy all current tests (no Equivalence Principle or Lorentz violation seen) while still allowing noticeable effects at neutron star scales. In particular, we can satisfy the strongest Equivalence Principle constraint with $\xi < 7.3 \times 10^{-30} \ \mathrm{kg \cdot s^4}$, and similarly ϵ must be $\ll 10^{-15}$ to avoid Lorentz violations in photon propagation, yet in a neutron star $\xi \mathcal{K}$ could be 10^{-8} and drive observable changes.

 A proposed experimental test using state-of-theart optical clocks to search for the unique siderealannual beat signature of the vector-time anisotropy.
 This offers a clear observational discriminant from other new physics, leveraging the precision of modern timekeeping to probe tiny relativistic effects.

If future experiments or observations were to find evidence consistent with these predictions—be it a curious annual modulation in clock comparisons, or anomalies in element formation in neutron star mergers—it would provide support for the idea that time is richer in structure than a one-dimensional line. Verifying such a radical extension of spacetime would profoundly impact our understanding of both quantum theory and gravity. It would hint that inertia and mass are not innate properties bestowed by the Higgs field alone, but rather emergent from the geometry of a higher-dimensional time manifold influenced by all the matter in the universe (a modern echo of Mach's principle).

In closing, 6DT presents an audacious but mathematically consistent way to unify disparate concepts: it marries the age-old puzzle of "What is mass?" with "What is the nature of time?" under the umbrella of gravitational theory. It passes non-trivial consistency checks—unitarity, correct limits to known physics,

etc.—and yields falsifiable predictions. The journey is just beginning: whether this theory stands or falls, exploring it pushes the boundaries of how we conceive time, and it challenges experimentalists to invent new ways to test the very fabric of reality. Such endeavors are the essence of progress in fundamental physics.

- I. Bars, "Survey of Two-Time Physics," Class. Quant. Grav. 18, 3113 (2001).
- [2] T. Kaluza, "Zum Unitätsproblem der Physik," Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921, 966 (1921).
- [3] V. A. Kostelecký and N. Russell, "Data Tables for Lorentz and CPT Violation," Rev. Mod. Phys. 83, 11 (2011).
- [4] V. V. Flambaum and A. J. Mansour, "Variation of the Quadrupole Hyperfine Structure and Nuclear Radius due to an Interaction with Scalar and Axion Dark Matter,"

- Phys. Rev. Lett. 131, 113004 (2023).
- [5] B. Burns, "A Vectorized Time Model in a 6D Spacetime: 6DT," Dragonex Technologies Internal Report (2025).
- [6] B. Burns, "The Stoke-6DT Framework: Analysis of Anomalous Power in a Six-Dimensional Vector-Time Manifold," Dragonex Technologies Internal Report (2025).
- [7] B. Burns, "A 6DT-Stoke Framework for Geometrically-Induced Mass Variation (GIMV)," (2025).