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We present the Six-Dimensional Vector-Time (6DT) framework, a unified field theory proposal
that extends spacetime with a three-dimensional internal temporal vector space. Unlike previous
multi-time theories, 6DT utilizes a gravity-coupled metric ansatz where the extra dimensions are
sourced by the Hessian of the Newtonian gravitational potential, K;; = 67281‘8]"1). To preserve
unitarity, we construct a constraint algebra based on the gauge group SO(3)t, eliminating negative-
norm ghost states via BRST quantization. We derive a covariant work-energy theorem for the
projected 4D motion, identifying the “Stoke Power” S¢p done by anomalous geometric forces with

21ng. This elevates mass variation from

the rate of change of the invariant rest mass: S¢p = —c
a kinematic effect to a dynamic principle, formalized as Geometrically-Induced Mass Variation
(GIMV). We derive the coupling of the nucleon field to the Kretschmann scalar invariant I, leading
to environment-dependent coefficients for the Semi-Empirical Mass Formula. We predict a “Dynamic
Valley of Stability” and “Geometrically-Induced Fission” (GIF) in strong-gravity environments.
Finally, we establish a “Viability Gulf” of 34 orders of magnitude in tidal curvature between Earth
and neutron stars, allowing the theory to satisfy stringent Equivalence Principle bounds (£ < 7.3 x
1073 kg-s*) while remaining dominant in astrophysical regimes. We propose a definitive test using
optical atomic clocks to detect boost-dependent sidereal-annual sidebands in the speed of light. The

quantum unification with gravity is explored in depth.

I. INTRODUCTION

The reconciliation of General Relativity (GR) with
Quantum Mechanics (QM) remains the premier open
problem in theoretical physics. While GR. describes grav-
ity as the curvature of a dynamical spacetime, QM oper-

ates on a fixed background with a unitary time evolution.

Attempts to bridge these frameworks often involve quan-
tizing geometry (Loop Quantum Gravity) or increasing
spatial dimensionality (String Theory). A less explored
but mathematically rich avenue is the extension of the

temporal manifold.

Historical attempts at multi-time physics, such as

those by Bars et al. in Two-Time (2T) physics [1], have



revealed hidden symmetries in the Standard Model but
often struggle with causality and ghost states in a phys-
ical interpretation. The Six-Dimensional Vector-Time
(6DT) framework proposed here differs fundamentally in
its geometric ansatz. Rather than a global second time
dimension, we posit a local internal vector-time space
that is activated by gravity, coupling directly to the tidal
curvature of the 4D “brane” (our observed spacetime).
This approach ties the new degrees of freedom to gravi-

tational environments, potentially evading the usual low-

energy constraints on extra time dimensions.

In this paper, we provide a comprehensive derivation
and analysis of the 6DT framework, highlighting how it
unifies gravitational dynamics with an intrinsic mecha-
nism for mass generation. In Section II, we define the
6D manifold and the gravity-coupled metric ansatz, then
develop the Hamiltonian constraints and gauge structure
needed to eliminate negative-norm states. A key result
is that an SO(3); gauge symmetry acting on the internal
time vector can reduce the theory to the usual single-
time formulation (thus maintaining unitarity). In Sec-
tion III, we present the 6DT action principle and de-
rive the extended Einstein field equations, showing that
our ansatz is a self-consistent solution (to leading order
in the coupling) that reproduces Poisson’s equation for
the Newtonian potential. Section IV examines the mo-
tion of particles in the 6D geometry. We derive the
anomalous 4-acceleration due to the extra dimensions
and formulate the “Stoke Power” work-energy theorem,
which links that anomalous force to changes in the par-
ticle’s rest mass. In Section V, we elevate this effect
to a field-theoretic principle, introducing Geometrically-
Induced Mass Variation (GIMV): a non-minimal cou-
pling of matter fields to spacetime curvature that effec-

tively makes masses environment-dependent. We focus

on nuclear physics implications, deriving how nucleon
masses and nuclear binding energies shift in regions of
intense curvature. Section VI then confronts the theory
with experiments and observations. We define the “Vi-
ability Gulf”—the enormous disparity in curvature be-
tween Earth’s lab scale and neutron star interiors—and
use it to reconcile the small coupling required by precision
tests with the potentially large effects in extreme astro-
physical settings. We also propose experimental tests, in-
cluding high-precision atomic clock comparisons search-
ing for distinctive sidereal-annual modulation effects that
would confirm the vector-time structure. In Section VII,
we discuss the conceptual implications of 6DT, compar-
ing it with other approaches such as Kaluza-Klein the-
ory and 2T physics, and outline future avenues. Finally,
Section VIII concludes with a summary of results and
emphasizes how 6DT provides a novel unification: con-
necting gravity, the origin of mass, and potential Lorentz-

violating signatures in a single theoretical framework.

II. GEOMETRIC FOUNDATIONS

A. The 6D Manifold and Metric Ansatz

We postulate a six-dimensional pseudo-Riemannian
manifold M©3) with local coordinates X4 = {z*,t'}.
Here, 1 € {0,1, 2,3} labels the usual four spacetime coor-
dinates (with 2° = ¢t as the ordinary time and 2!, 22, 23
the spatial coordinates on the 4D brane), and i € {1, 2,3}
labels the components of an internal time vector t in a 3-
dimensional temporal space. The total signature is cho-
sen as (3,3), with three time-like directions and three
space-like directions. In particular, the metric has three
negative eigenvalues associated with {ct!,ct?,ct®} and
three positive eigenvalues associated with the spatial di-

rections. This symmetric choice of signature (3,3) en-



sures that the internal time components can mix under
rotations (an SO(3) symmetry) without introducing su-
perluminal propagation or acausal signal propagation in
the physical 4D subspace. Physically, one can think of
t as a local “triplet of clocks” whose orientation is influ-

enced by the surrounding gravitational field.

The defining feature of 6DT is the metric ansatz that
couples the internal time and ordinary space sectors via
the gravitational tidal tensor of the local matter distri-

bution. In block matrix form, we posit the 6D metric:

—62 (Sij EKik(l‘)
GAB(X) = ) (1)
eKyj(z)  gr(z)

where 4,7 € {1,2,3} index the internal time directions
and k,l € {0,1,2,3} index the 4D spacetime directions.
Here gy () is the ordinary 4D spacetime metric (assumed
for now to be close to Minkowski or a weak-field metric in
a given coordinate patch), and d;; is the Euclidean metric
on the internal time space. The off-diagonal block K (x)
is the key innovation: it is taken to be proportional to
the Hessian (second spatial derivatives) of the Newtonian

gravitational potential ®(x) evaluated on the 4D slice:
1
Kij(z) = - 0:0;®(2) , (2)

with € a small dimensionless coupling constant control-
ling the strength of the 5-6 metric mixing. In practice,
®(x) can be identified with the weak-field limit of the
goo metric component (so that ® ~ —1c?(1 + ggo) in a
quasi-static gravitational field). The spatial indices i, j
in K;; correspond to derivatives in the ordinary spatial
directions z', 22, z3. This ansatz ensures that in a region
with a uniform gravitational field (where 0;0;® = 0 —
i.e. no tidal gradients), the extra time dimensions decou-

ple completely: K;; = 0 and the metric (1) factorizes into

a direct product of the standard 4D spacetime and a flat
3D internal space. This important property means local
inertial frames (free-fall frames in GR) do not feel the
presence of ¢ — preserving the Equivalence Principle lo-
cally, since a freely falling observer in a uniform field can
rotate away any constant vector-time components. Con-
versely, in regions with strong tidal gravity (such as near
a gravitating mass or inhomogeneity), the off-diagonal
metric components K;; become significant, introducing
new effects in particle dynamics. The dimensionless cou-
pling € will be tightly constrained by experiments (as
we address in Section VI), but could be of order unity
in extreme astrophysical settings without contradicting

known physics.

It is useful to interpret the structure of Kj;. In New-
tonian terms, K;;(z) is the tidal tensor: for a point mass
M in the weak-field limit, ®(z) = —GM/r and
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which has trace zero (67K;; = 0 in vacuum) and
eigenvalues that reflect the familiar tidal stretch-
ing/compression along radial and tangential directions.
In our metric, this K;; plays a role analogous to a field
strength or potential coupling the internal ¢ coordinates
to the spacetime coordinates. Indeed, one can think of
€K ,; (with p a spacetime index and ¢ an internal index)
as a set of effective gauge fields induced by gravity, albeit
they are not independent fields but fixed by the second
derivatives of ®(z). This is in contrast to Kaluza-Klein
theories where extra off-diagonal metric elements g,,5 pro-
duce genuine gauge fields (such as the electromagnetic
A,) with their own field equations [2]. Here, the off-

diagonals €K ,; are non-dynamical in the sense that they

are entirely determined by the local matter distribution



through ®(z). This approach ties the new vector-time
sector to known physics (gravity) and avoids introduc-
ing long-range forces beyond GR, making the framework
phenomenologically more palatable. It also implies that
any observable effects of the extra time dimensions will
manifest only in the presence of nonzero tidal curvature
and will vanish in gravity-free or uniformly gravitating
regions.

Finally, we note that the small parameter € is critical
for ensuring the metric (1) remains physically sensible.
Since K;; typically has dimensions of [Tidal acceleration]
~ (time) =2, eKjj, is dimensionless in the metric (having
units of ¢? times dimensionless coupling, scaled by ®’s
second derivatives). We assume |eK;| < ¢? in all regions
accessible to experiment, which guarantees that G 45 has
the correct (3,3) signature everywhere (no sign flips in
the metric eigenvalues) and that perturbation theory in
€ is valid. Indeed, as we show later in Section VI, cur-
rent experiments constrain eK;; on Earth to be extremely
small. In extreme conditions like neutron stars, eK;; may
become order unity in dimensionless terms, and the full

non-linear structure of 6DT would come into play.

B. Constraint Algebra and Ghost Elimination

Extending time to a multi-component object raises the
specter of ghosts—states of negative norm or energy that
typically arise if extra time-like degrees of freedom prop-
agate unconstrained. To formulate a consistent theory,
we impose a set of first-class constraints on the 6D phase
space that effectively remove any unphysical degrees of
freedom associated with the extra times. The guiding
principle is to enforce that only one effective time param-

eter governs physical evolution, even though that time

can have an internal vector character.

Let P4 denote the canonical momentum conjugate to
XA, In particular, P, are the momenta conjugate to the
internal time coordinates t*, and P,, are the momenta
conjugate to the spacetime coordinates x*. The natural
generalized “mass-shell” condition in 6D can be written

as a Hamiltonian constraint:
N ) 22
q)() = 672G74j PtiPtj + mict =~ 0, (3)

where Gg) = —c?§;; is the metric on the internal time
subspace (the inverse of —c25ij that appears in the upper-
left of (1)), and m is the invariant rest mass of the parti-
cle. In writing (3), we assume the point-particle action in
6D takes the form S = —mec [ dr \/—GagUAUB (with
U4 = dX*/dr), which yields both the geodesic equa-
tions and this primary mass-shell constraint on momenta.
The constraint &5 ~ 0 ensures that motion in the internal
time directions is linked to the particle’s rest mass, analo-
gously to how the usual 4D mass-shell — P, P*+m?c? = (
constrains energy-momentum in relativity.

Next, we impose three additional constraints associ-
ated with an SO(3); gauge symmetry that acts on the
internal time indices. We introduce

Jij = tiPy — tjPs = 0 (i< 7). (4)

These J;; are the generators of rotations in the 3-
dimensional internal time space (they are analogous to
angular momentum components, with ¢; and Py playing
the roles of ”coordinates” and ”"momenta” in that in-
ternal space). Enforcing J;; = 0 means the internal time
vector ¢ can be rotated arbitrarily without changing phys-
ical state, and likewise the momentum associated with ¢
can rotate accordingly. In essence, t has no preferred di-
rection in the absence of a gravitational field (and even

in a gravitational field, any choice of basis in ¢ space is



physically equivalent, which will ensure that no spurious
polarization states propagate). The three constraints .J;;
(with i < j giving 3 independent conditions) generate
the SO(3); gauge transformations.

It is straightforward to check that these constraints
are all of first class. The Poisson bracket algebra among
them closes according to the so(3) Lie algebra:

{Jij, Jaitp.B. = Ok Ju — dix Jju — 051 Jik + 8ir S, (D)

which is just the statement that J;;’s generate rotations
in the 3-vector space. Moreover, one finds that J;; com-

mute (weakly) with the mass-shell constraint ®g:
{Jij, ®o}pB. =0, (6)

since @y was constructed to be manifestly SO(3) invari-
ant (GE? P,i P,; is proportional to d;; Py P;;, which is ro-
tationally invariant in the internal indices). Thus @ is
also first-class. We started with a 12-dimensional phase
space for a particle in 6D (X4 and P4, 6 each), but
we have 143 first-class constraints. By standard count-
ing, first-class constraints remove two phase-space dimen-
sions each (one for the constraint, one for the associated
gauge-fixing condition). Therefore the total number of
independent physical phase-space degrees of freedom is
12 — 2(1 + 3) = 4. This matches the usual 4D result (a
massive particle in 4D has 3 spatial coordinates plus a
conjugate energy, minus one mass-shell constraint yields
3*2+... etc, ultimately 4 physical phase-space dimensions
corresponding to one true temporal and three spatial de-
grees). In other words, the constraints reduce the appar-
ent extra dimensions to an unobservable gauge. The the-
ory propagates no ghost-like excitations: all unphysical
polarization or negative-norm states in the internal time

sector are pure gauge artifacts that can be eliminated by

appropriate gauge choice. The invariance under SO(3);
rotations of ¢ ensures that only the magnitude of the in-
ternal time interval (related to the particle’s proper time)
has physical meaning, not its orientation in the 3D time

space.

C. BRST Quantization and Unitarity

The above classical constraints must be consistently
implemented in the quantum theory to avoid negative-
norm states. We therefore adopt the BRST quantiza-
tion procedure, which is designed for systems with first-
class constraints and gauge symmetries. We introduce
ghost fields ¢ and corresponding antighosts b, for each
first-class constraint ®,, (here ®, would index the single

Hamiltonian constraint & and the three SO(3); genera-

tors J;;). The BRST charge @) is constructed as:

Q=) c"d, — %Zfagc%ﬁbv, (7)
a a,B,y
where fag are the structure constants of the constraint
algebra. In our case, the second term encodes the SO(3)
commutation relations for J;;. The BRST charge is
nilpotent (Q? = 0) as long as the constraint algebra closes
and satisfies the Jacobi identity, which we have already
verified for the SO(3), algebra. Physical states |¥) in the
quantum Hilbert space are then defined as those in the
cohomology of Q, i.e. Q¥) =0 (BRST-closed) modulo
any state of the form @|x) (BRST-exact). These con-
ditions ensure that two states differing only by a gauge
transformation are identified (as |¥) — |¥') = Q|x) for
some |x) means |¥) and |¥’) are physically equivalent),
and that no negative-norm ghost states appear as exter-

nal states. The inner product is constructed such that

the ghost sector has an indefinite metric (ghosts carry



negative norm), but the physical cohomology states have
positive norm due to cancellation of ghost contributions.
In effect, BRST quantization removes the ghost degrees
of freedom while preserving unitarity of the S-matrix for
physical states. This formalism is directly analogous to
how gauge theories (like QCD or QED) handle unphysi-
cal polarizations of gauge bosons via the Faddeev-Popov
trick and BRST symmetry. Here, the SO(3); gauge sym-
metry plays the role of an internal gauge symmetry en-
suring a unitary theory. We thus conclude that at the
quantum level, the 6DT framework can be made ghost-
free and unitary: any state that would correspond to ex-
citation along an unphysical time direction is eliminated

by the constraint J;;|¥) = 0 and BRST consistency.

III. 6DT ACTION AND FIELD EQUATIONS

Up to this point, we have treated the 6D metric (1)
as a background ansatz sourced by the Newtonian po-
tential ®(x) of some matter distribution. We now pro-
mote the metric to a dynamical entity and formulate the
field equations of 6DT gravity. Our starting point is a
six-dimensional Einstein-Hilbert action with the metric

Gap(X):
Sgrav = 2/1(23/d6XV -G R(ﬁ)[G]’ (8)

where R(®) is the Ricci scalar curvature of the 6D met-
ric and k% = 87Gg defines the 6D gravitational coupling
constant (G has units of (length)?/mass/time?, which
can be related to 4D G once a compactification or physi-
cal scaling is specified). We assume any 6D cosmological
constant is zero or negligible at the scales of interest.

Varying (8) with respect to G4p yields the 6D Einstein

field equations:

1
Rip = 5CanR® = T, (9)

where Tffj; is the stress-energy tensor in 6D. To con-
nect with our ansatz, we now need to specify the mat-
ter content in 6D. A conservative approach is to assume
that ordinary 4D matter fields live on (or are smeared
across) the 4D submanifold (brane), meaning TX}); has
support primarily in the 4 x 4 block corresponding to the
spacetime directions. We do not introduce any exotic
matter propagating purely along the internal time direc-
tions; this keeps the model minimal and avoids sourcing

potentially dangerous excitations in the extra sector. In

practice, one can take Tjg% to be of the form

Ti(X) = 64 65 T (2)8°(7).

i.e. ordinary 4D stress-energy Tﬁ) (z) localized at £ = 0
(the origin of the internal time space). This reflects that
familiar matter fields do not propagate in ¢ and that any
coupling of matter to  is through gravity only (consistent
with the Equivalence Principle: all matter feels gravity
universally including any effects from the metric exten-
sion). For the purpose of deriving field equations for the
metric ansatz, we will assume a continuous distribution
for simplicity, with T 153% effectively nonzero only when
A, B are spacetime indices.

We now plug the metric form (1) into the Einstein
equations (9) and examine the structure. In general, solv-
ing the full 6D equations exactly is complicated, but we
can expand in powers of the small coupling e. Setting
€ = 0 decouples the extra dimensions, and the 6D equa-
tions reduce to ordinary 4D GR plus three additional
flat dimensions (with no coupling between them). To

first order in €, the Einstein tensor can be expanded and



one finds a system of equations for K;;(z) coupled to the
4D metric gg;(x). Schematically, we can write the com-
ponents of the 6D Einstein equations (suppressing index

positions and focusing on the independent blocks) as:

Gy - G+ eDy[K]+0() = 2T, (10a)
G eLi|0K]+0O(&) = k2T, (10b)
G+ GG + e M, K]+ 0() = kTS . (10c)

Here G,(f,,) is the 4D Einstein tensor of the spacetime met-
ric g (), while GE;-) denotes the Einstein tensor compo-
nents along the internal time directions (which in the
€ — 0 limit reduce to simply —0252-]- R(G)/2 since the
internal space is flat when decoupled). The symbols
D;;[K], L;[0K], and M, [K] represent certain differen-
tial operators (involving spatial derivatives and connec-
tions) acting on K;;(x). Their explicit forms are lengthy,
but conceptually: - Equation (10a) (the internal-internal
component of Einstein’s equations) becomes an elliptic
equation for the trace and spatial divergence of K;;. At
leading order, it demands that any curvature in the in-
ternal time sector (represented by GZ(-;)) is sourced by

)

gradients of K;;. Because Ti(j6 is zero for 7,j (no mat-
ter purely in internal sector), this equation in vacuum
essentially reduces to a homogeneous condition on Kj;.
- Equation (10b) (the mixed components) relates spa-
tial derivatives of K;; (through L;[0K]) to any momen-
tum flow or stress connecting the 4D and internal sectors
(Ti(f)). In our minimal matter scenario Ti(f) = 0 (since
matter has no 4 index), this implies that L;[0K] = 0.
This condition can be interpreted as requiring K;;(x) to
be derived from a potential (which indeed we assumed:
K;; = ¢20;0;® automatically satisfies eL;[0K] = 0 be-
cause a pure Hessian has zero curl, etc.). - Equation

(10c) (the ordinary spacetime components) yields a mod-

ified 4D Einstein equation. To leading order, one gets
G4 = k2T — ¢ M, [K]. The M,,[K] term acts like
an additional source in the 4D Einstein equation arising
from the presence of the K field. In effect, K;; con-
tributes extra stress-energy back onto the 4D metric,
which can be viewed as the gravitational back-reaction
of the vector-time sector.

The important point is that to O(e), the system of
equations for K;; is linear and resembles a Poisson-like
equation. In fact, taking the trace of the spatial part
or appropriate combination of the above equations, one
finds that K;;(z) must satisfy an equation of the form:

_ 8nGes
===

V2Kj(z) + ... 0;0;p(x) + O(e), (11)
where p(x) is the mass density and G.g an effective grav-
itational coupling. The precise form of (11) involves the
differential operators D, L, M acting on K, but one so-

lution that clearly satisfies the static limit of these equa-

tions is indeed
1

with ®(x) obeying the usual Poisson equation V2@ =
47Gp(z) in the 4D slice. In other words, our metric
ansatz with K;; defined as the Hessian of the Newtonian
potential is consistent (to first order in €) with the 6D
Einstein equations: the internal sector field equations re-
duce to the condition that ® be a gravitational potential
produced by the matter distribution p(z). This justifies
our ansatz as a valid solution (or at least a valid approx-
imation) of the full theory.

For a concrete illustration, consider a static, spheri-
cally symmetric mass M (e.g. a star or planet). In stan-

dard GR, the exterior Schwarzschild solution at large r is

goo = —(1—2GM/(c?r)) and g;; ~ (14+2GM/(c*r))d;j to



leading order, so ®(r) & —GM /r. Our 6D metric ansatz
in this case yields:
o GM 3$Z‘£L'j - (Sl'j’f'z

Kij(r) = — - ;

which is just the vacuum tidal tensor of the mass. Plug-
ging this into the 6D Einstein equations (with ng =0in
the vacuum region r > Rg ) one can verify that all compo-
(6)

nents are satisfied to O(e). The mixed components Gy,

vanish because K;; is a pure gradient (no “gravitomag-
netic” components), and the internal Gg?) components
reduce to Laplace’s equation V2(9;0;®) = 0 (which holds
for r # 0 since V2@ = 0 outside the mass, and 9;0; com-
mutes with V2 on a scalar). The el components reduce
to the usual V2® = 0 which is true outside. Thus, the
ansatz (1) with (2) is not just an arbitrary proposal—it
aligns with a consistent perturbative solution of the ex-
tended field equations in 6D. Deep inside strong fields or
for dynamical situations, higher-order € terms would be-
come important, potentially leading to non-linear equa-
tions for K;; and modifications of g, ; those lie beyond
our present scope but are conceptually approachable via

this framework.

To summarize, the 6DT gravity theory can be for-
mulated in a self-consistent way: by writing down the
6D action and field equations, we see that our choice to
source the extra-time metric components by the Newto-
nian potential is justified as a solution of those equations
(ensuring we recover standard gravity where expected).
Furthermore, no new long-range fields beyond GR ap-
pear at leading order, which is essential for compatibility
with observations (e.g., we do not get a massless scalar
or vector propagating from the extra sector that would
violate tested gravitational laws—the effects of K; only

appear in tidal regimes and are governed by the same

source as Newtonian gravity). In higher sections, we will
not need the full machinery of these 6D field equations;
rather, we will take the metric ansatz (1) as our working
model and explore its consequences for particle motion

and field interactions.

IV. KINEMATICS: THE STOKE-6DT
FRAMEWORK

A. Modified Geodesic Equation and Anomalous

Acceleration

A test particle in the 6DT geometry follows a geodesic

in M5, which satisfies the geodesic equation:

dUA

— M5 (X)UPUC =0, (13)

where U4 = dX“/dr is the 6-velocity and '} are the
Christoffel symbols of the 6D metric. We are particularly
interested in the projected motion on the 4D spacetime
submanifold, i.e. the trajectory z*(7). Its acceleration

can be obtained by looking at the p-components of the

geodesic equation:

du*

—+ I, UPUC =0. (14)

Decomposing the index B (and C) into spacetime and
internal parts, there will be terms involving I'#,_U*U?
(which represent the 4D geodesic motion under the ef-
fective 4D metric g, ), and terms involving I'*, U*U"” or
r U iUJ that represent influences from motion in the
internal # directions. Using our metric ansatz (1), one
finds that the dominant new term (to first order in €) in

the 4-acceleration comes from Christoffel symbols with



one internal index:

D m s O Wi = 0, W,) . (15)
where we have defined W,;(z) = eK,(x) for conve-
nience. Here J, denotes partial derivative with respect
to the spacetime coordinate x”. This form is sugges-
tive: it looks analogous to an electromagnetic field tensor
F,, =0,A, —0,A, contracted with a “vector potential”
A,, except that here the “potential” is W,; and it car-
ries an internal index i. The antisymmetric combination
0, Wyi —0sW,,; arises from the derivatives of the metric’s
off-diagonal components.

Plugging this into the geodesic equation, the 4D accel-
eration a* = DU*/dr (with D/dr the covariant deriva-
tive in 4D) picks up an anomalous term:

o
Qanom

= —g"" (0, Woi — 0,W,,;)UYU" + O(e?) . (16)
We use U® = dt'/dr to denote the velocity components in
the internal time directions. Several important features

are evident from (16):

e The anomalous force is velocity-dependent. It is
proportional to U¥U*, meaning it vanishes if either
the particle has no velocity in the internal time
space (U® = 0) or if it is at rest in the 4D space
(U¥ only has a time component). In a typical sce-
nario, a particle initially at rest in an inertial frame
has U? = 0, so no anomaly until motion or gravi-
tational inhomogeneity causes U, to grow. This is
reminiscent of how magnetic forces require charges
to be moving; here the internal time acts somewhat
analogously to a “charge” that must be in motion

to feel a force.

e The force depends on spatial gradients of K,;.

Since K,;(z) is built from 9,,0;®, roughly speak-
ing 9, K 5; will involve third derivatives of ®. Thus
the anomalous acceleration is sensitive to spatial
variations of the tidal field (e.g. a changing tidal
field across space or in time). In a uniform gravita-
tional field (constant K;;), 0,W,; = 0 and indeed
a¥ om = 0 as expected by the Equivalence Princi-

ple.

e There is no explicit dependence on the internal co-
ordinates t* themselves in (16), only on the internal
velocity U®. This is a consequence of our SO(3),
symmetry and the fact that physical effects cannot
depend on the absolute orientation of #, only on

how fast it changes relative to the 4D motion.

e The structure 0, W,; — 0,W,; hints that W,; acts
like an SO(3) gauge field (with field strength com-
ponents given by that combination). Indeed, one
can show that J;,W,; transforms under internal
rotations in a way similar to a non-Abelian field
tensor (though here the gauge group is fixed and

tied to spacetime derivatives).

To make this concrete, consider a simple scenario: a
particle moving slowly in the gravitational field of Earth
(so @ is approximately —GMg/r). The dominant com-

. 2G M,
ponent of Kj is K, = — =55

(radial tidal compression)

GMg
c2r3

and Kgg = Kgp = + (tangential stretching). If the
particle moves horizontally (tangentially) with some ve-
locity v and has some initial internal velocity U* (perhaps
from a prior encounter or oscillation of the internal clock
vector), then 9, K,; will be nonzero as it moves into re-
gions of slightly different r. Equation (16) then yields an
anomalous acceleration which, depending on the orien-

tation of U, could have components both radially and

tangentially. This could manifest as a tiny perturbation



to the trajectory, potentially measurable as a deviation
from a geodesic. However, as we will see in Section VI,
for Earth € is so small that such deviations are far below
detectability with current technology (hence the need for

specialized experiments).

B. Work-Energy Theorem and the Stoke Power

One of the most striking implications of the 6DT
framework is that a particle’s rest mass can change in
response to motion through tidal fields. We now derive a
covariant work-energy theorem that makes this precise.
In standard 4D relativity, if a particle of constant rest
mass m experiences a 4-force f*, energy-momentum con-
servation can be expressed as P, f* = % (—%m%z) =0
(since m is constant, any 4-work done goes into kinetic
energy). However, in our case there is an “anomalous”
4-force arising from the extra dimensions which can do
work on the particle by changing its rest mass energy.

The particle’s 4-momentum is P, = m(7)U,, where
m(7) is the varying rest mass and U, is the 4-velocity
(with U,U* = —c* by normalization). The covariant
derivative of the momentum is:

DpP, d

= %(mUu) —mU"T",, Uy,

but since U, satisfies the geodesic equation in 6D, the
second term accounts for the spatial part of acceleration
(which includes the anomaly), and the first term includes

rh. Contract this with U*:

DP d .
U+ dTﬂzU“E(mUH)—mU“U I7,,0x. (17)
Now, UMU, = —c? is constant, so Ur-(mU,) =

mUrU, + mUPU, = —c*m + mU*U,. But UMU, =

DP,
dr

%(UN'UH) = 0 since UMU,, is constant. Thus UH
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—c?mn. The left-hand side is essentially P,a* (since

DP,/dr = ma, for the physical 4-acceleration a, plus

any change from varying m, but we have included that).

: L DU* _ 1D N
More directly, note that P,a" = P, %~ = 5 (U,P")
(by the product rule) = 12 (—mc?) = f§m, which is

equivalent to the previous statement. Therefore, we have:

P,a" = — 02%: . (18)
This is the generalized work-energy theorem for a particle
with varying mass m(7). The quantity P,a* is the 4D
relativistic power (work done per unit proper time) by the
net 4-force on the particle. In our scenario, the only 4-
force present is the anomalous one arising from the extra
dimensions (there is no “real” 4-force in 4D, since we
are considering free fall aside from the 6D effects). We
identify the Stoke Power as the covariant 4-work done
by the 6D anomalous force:

SGD = PM a¥

anom °

(19)

Using equation (16) in this definition, we get an explicit

expression in terms of W,; and velocities:

SGD = — m(T) g“"(a,,Wm' — ang‘)UVULU# 3
which can be simplified further, but the key result is al-

ready obtained by comparing with (18):

2 dm

. (20)

SGD = —C

This is the central identity defining the Stoke Power. It
states that the power delivered by the 6D anomalous
force is exactly spent (positive or negative) on changing
the invariant rest mass of the particle. If Sgp is positive

(the anomalous force does positive work on the parti-



cle), then dm/dr is negative: the particle’s rest mass
decreases. Equivalently, rest mass energy is being con-
verted into kinetic or internal energy. If Sgp is negative,
the particle gains rest mass (slows down in internal mo-
tion perhaps), drawing energy from its motion or from

the gravitational field.

This is a profound result: it elevates what might seem
like a curious kinematical effect (mass variation) into a
dynamical principle. In 6DT, rest mass is not a sacred
constant of motion but a quantity that can be exchanged
with the geometric fields. However, equation (20) also
reassures us that energy is still conserved overall (in a
local sense). The change in rest mass energy c?dm is
accounted for by the work done by a well-defined force
(the projection of the 6D geodesic force onto 4D). No
energy is mysteriously lost or gained; it is transferred
between the internal degrees of freedom (the #-sector)

and the particle’s rest mass reservoir.

To get an intuition, consider an object oscillating in
a strong tidal field (imagine a satellite in orbit around
a neutron star, where tidal forces are significant). As it
moves through regions of varying tidal stress, its internal
time vector ¢ might rotate or change length slightly (an
effect analogous to frame dragging but in the time sec-
tor). According to (20), if the tidal field does work on
the internal clock (Stoke Power > 0), the satellite’s rest
mass will slowly diminish, converting that mass to other
forms like increased orbital kinetic energy or internal ex-
citation. Conversely, if moving against the tide (so to
speak), it could gain rest mass. The effect is extremely
small for any realistic situation we can create in the so-
lar system, but conceptually, it means gravity can induce
a change in the intrinsic mass of objects—a feature not

present in GR or standard physics.

It is worth noting that similar ideas of variable rest
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mass have appeared in other contexts (e.g., radiation re-
action forces can effectively reduce a mass, and Higgs
field variations give particle mass differences), but here
it arises purely geometrically and in principle affects all

forms of mass-energy universally via gravity.

V. GEOMETRICALLY-INDUCED MASS
VARIATION (GIMV)

A. Field Theory of Mass Variation: Lagrangian

Formulation

The Stoke Power identity (20) suggests that rest mass
can be influenced by geometry. We now embed this
notion in a field-theoretic Lagrangian to see how mat-
ter fields acquire environment-dependent masses in 6DT.
Consider a generic matter field ¥ (this could be a scalar,
spinor, etc.). In conventional physics, a mass term in the
Lagrangian is a scalar of the form —m¥W. In curved
4D spacetime, one might allow m to vary with position
if some scalar field or background field exists. In our
case, a natural candidate for such a background is the
curvature invariant associated with K;;. We define KC(x)

as the simplest scalar that can be constructed from the

tidal field: one choice is

1
K(z) = @RABCDRABCD, (21)

which is one quarter of the usual Kretschmann scalar of
the 6D geometry (the factor 1/48 is chosen so that in
a static gravitational field, I reduces to something like
(ViV,;®)(VVI®) up to factors of ¢?; in Schwarzschild
geometry it matches G2M?/(c*r%) as given below).
Physically, K measures the local intensity of curvature
(tidal forces). It vanishes in flat spacetime and is ex-

tremely small in weak gravity, but huge near neutron



stars or black holes.

We propose a nonminimal coupling (NMC) between
K(z) and matter fields that causes the effective mass of
those fields to shift. For concreteness, let’s focus on the
nucleon field (since a major part of our interest is in nu-
clear binding and stability). Let ¢ (z) be a Dirac field
representing nucleons (protons and neutrons). We write

a modified Lagrangian term:

ALmass = — EK(2) ¥ (2) Y (). (22)

Here £ is a coupling constant with dimensions that ensure
¢ K has dimensions of mass (in units with ¢ = 1 it would
be energy, in SI units ¢ might have units kg - s* to make
€K dimensionless when multiplied by ¢?, as seen later).

The full nucleon Lagrangian would be:

Ly =ty (9" Dy —my —EL@)) Yn,  (23)

where mQ; is the bare nucleon mass (in absence of curva-
ture) and D,, is the covariant derivative including gauge
fields (electromagnetic, etc., which we omit for simplic-
ity). The term &Ki¢) thus acts as a position-dependent

effective mass term. We can interpret
my (¢) = my + €K () (24)

as the nucleon’s effective mass in a region with curva-
ture scalar K(z). If K is positive (as it is in normal
gravitational fields, since RapcpRAPCP is positive semi-
definite), then in a strong gravitational curvature region
mST increases or decreases depending on the sign of .
The sign of £ is not fixed a priori; if we expect that mass
is mostly generated by geometry (in some Machian sense)

we might expect ¢ positive so that in strong curvature

masses increase. On the other hand, to have masses de-
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crease (as we found with the Stoke power positive reduces
mass), we might expect £ negative. For now, we consider
|€] < 1 (since we already have observational limits) and

focus on magnitude rather than sign.

In the context of nucleons inside nuclei, a modification
of nucleon mass translates to changes in nuclear binding
energies and reaction thresholds. Nuclear physics is es-
sentially a balance of several energy terms, encapsulated
by the Semi-Empirical Mass Formula (SEMF) which es-
timates nuclear binding energy:

72 (A-27)
7aCA1/3 —aa ) +

Eg(Z,A) = ay A—agA*/®

(25)
where A is the nucleon number, Z the proton number,
and ay,ag,ac,as are volume, surface, Coulomb, and
asymmetry coefficients respectively (with typical values
ay ~ 15.8 MeV, ag ~ 18.3 MeV, ac ~ 0.714 MeV,
as =~ 23.2 MeV in terrestrial conditions). These phe-
nomenological terms derive from nuclear microphysics:
e.g. ac is related to the electrostatic repulsion between
protons in a certain nuclear charge distribution, ag re-
flects surface tension of the finite nuclear droplet, a4
comes from nuclear symmetry energy which in turn is

tied to properties of nucleon interactions and masses.

If mS changes, several of these coefficients will shift
because many nuclear properties scale with the nucleon
mass. For instance, in nuclear liquid drop models and in
chiral effective field theory, the nuclear radius parameter
7o (which sets the radius R ~ rgA'/?) depends inversely
on the nucleon mass and the pion mass, etc. A recent
study by Flambaum and Mansour [4] considered how nu-
clear observables shift if fundamental constants or par-
ticle masses vary (motivated by e.g. dark matter fields
coupling to quarks). They found that a fractional change

in nucleon mass dmy/my induces a fractional change



in nuclear radius of about 0r¢/r9 ~ —4.8 (dmy/mn).
This implies that if nucleon mass increases, nuclei become
slightly smaller (higher density), and vice versa. Such a
change in radius affects the Coulomb energy (E¢ o« 1/79
roughly, since a smaller radius means protons are closer
together, raising electrostatic repulsion) and the surface
energy (Eg oc rg for surface area changes). Using rela-
tionships gleaned from nuclear models and the results of
[4], we can estimate how the SEMF coefficients change

with my:

dac 00 4 g%MN (26)
ac To my

] 0 0
ﬁzgﬂz_9.6ﬂ7 (27)
as 70 my

] 5

oaa %4,8.6@, (28)
aA my

where the number for a, is an estimate considering
that symmetry energy involves Fermi motion of nucle-
ons (which scale with 1/my) and nuclear interaction po-
tentials (some of which scale with mp). The signs and
magnitudes are such that: - If nucleon mass increases
(6mpy > 0), the Coulomb term ac increases (nucleus is
smaller, protons closer, more repulsion), the surface term
as decreases (nucleus is smaller, relatively less surface
area cost per nucleon), and the asymmetry term a4 in-
creases (heavier nucleons mean higher kinetic energy for
given Fermi momentum, raising cost of asymmetry). -
Conversely, if my decreases, ac drops, ag rises, and a4

drops.

Now plug in dmy/my = EK/mpy for small changes

due to curvature. Thus in a region of nonzero K (like
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near a neutron star),

dac 448 K 7 (29)
ac mn

das ~ —-96 K , (30)
as my

1)

Saa 565K (31)
aa mn

These are order-of-magnitude estimates intended to illus-
trate the sense of changes. The reference my here can be
taken as 939 MeV/c? in energy units or 1.67 x 10727 kg
in mass units. The key point is that all these coeflicients
can shift significantly if €K is not negligible compared to
mypy. On Earth, IC is tiny, so these shifts are completely
negligible. But near a neutron star, X can be enormous
(see Table I), and even if ¢ is very small, the product (K
could approach unity or larger, causing order-1 changes

in the nuclear coefficients.

From the perspective of nuclear stability, these changes

imply:

1. Dynamic Valley of Stability: The line of beta-
stability (optimal N/Z for stable nuclei) depends
on the competition between Coulomb and asym-

metry terms. Normally, CZETB = 0 leads to Z/A =~

aA

e (1 —375) for large A. If ac increases and a4 in-

creases (with a¢ increasing relatively more in frac-
tional terms as seen by coefficients 4.8 vs 8.6, but
note a4 is larger than ac normally), then the opti-
mal Z/A might shift. For example, a nucleus that
was stable on Earth might find that in a high K en-
vironment the increased Coulomb repulsion (due to
decreased () makes it favorable to have fewer pro-
tons (lower Z for same A). So neutron-rich isotopes
could become relatively more stable. The entire

landscape of stable isotopes moves: what was stable

may beta-decay, and previously unstable neutron-



rich nuclei might become stable. This is what we
call the Dynamic Valley of Stability: it is the locus
of (Z, N) that minimizes energy for given A under
those altered constants. As conditions (curvature)

change, the valley moves.

2. Geometrically-Induced Fission (GIF): The
competition between surface tension and Coulomb
repulsion determines fission stability. The dimen-
sionless fissility parameter r = QETCS is often used:
if x < 1, a nucleus is stable against spontaneous
fission (surface term dominates binding more than
Coulomb pushes it apart); if > 1, the nucleus is
at the verge of spontaneous fission or will readily
fission. Normally, heavy nuclei like Uranium have
x =~ 0.7 — 0.9 and are barely stable (U-238 spon-
taneously fissions very rarely, etc.). If K is large
and according to (29), (30), ac can significantly in-
crease while ag decreases, then x will increase. For
instance, if K/mpy ~ 0.1, then ac might increase
by 0.48 (48%) and ag decrease by 0.96 (so as new
is 90% of original). For a heavy nucleus, x could
jump from 0.8 to ;1.0, meaning a nucleus that was
barely stable could become spontaneously fission-
ing. In extreme cases (§K/my ~ 0.2 — 0.3), even
medium-mass nuclei could hit x > 1. This implies
an environment with strong curvature could induce
fission of materials that are normally stable. We
dub this effect Geometrically-Induced Fission
(GIF). In a neutron star crust or near a black hole,
ordinary matter might spontaneously break apart

into smaller nuclei (or even nucleons) due to this

effect, releasing energy differently than expected.

It is intriguing to consider astrophysical consequences:
If heavy element nucleosynthesis (like the r-process creat-

ing gold, uranium, etc.) occurs in neutron star mergers,
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the presence of ultra-strong curvature might alter which
nuclei are favored or how far the r-process proceeds be-
fore nuclei fission back. This could potentially lead to ob-
servable differences in kilonova yields or energies. While
speculative, it shows the kind of phenomenology GIMV

introduces.

B. Backreaction on Fundamental Scales and

Bounds

One might wonder if changing nucleon mass might also
require changes in other constants (like the electron mass
or fine-structure constant) for consistency. In our frame-
work, we treat £ coupling only to hadronic mass. Elec-
tron mass might also get a tiny shift if similar coupling
exists, but being a lepton not made of nuclear binding,
one could hypothesize a much smaller coupling. Either
way, any such effect is heavily constrained by precision
measurements. For example, in atomic clocks, the ra-
tio of different atomic transition frequencies could vary if
electron mass or nucleon mass changes. So far, no such
variation is seen beyond ~ 1077 per year, which indi-

cates any coupling of fundamental constants to gravity

or environment is extremely small.

In our case, laboratory experiments put stringent lim-
its on £ by testing the Equivalence Principle and search-
ing for fifth forces. The presence of a position-dependent
mass mS (z) means different materials or isotopes with
different neutron/proton content could fall differently in
Earth’s gravity (violating the universality of free fall),
because the fraction of mass energy that is curvature-
induced could differ. The E&tvos parameter 7 for two
materials would be of order the difference in &K contri-

butions. To avoid any conflict with the best EP tests

(currently n < 107! or so for various substances), we



need £Kg /my < 10714, Taking Kg on Earth surface (a

very tiny curvature) and my in SI units, we get:

10714
<2 MmN

3 Ks

(32)

Earth’s curvature Kg can be estimated from the New-
tonian tidal field: for Earth, Kg is on the order of
10712 s=* in the units we used in Table I (this corre-
sponds to, say, a curvature radius of about Earth radius

giving ~ GM/R3c? scale). Using my ~ 1.67 x 10727 kg,

we have

14 1.67 x 10727

ooz~ 167 10729,

£ <10™

which is on the same order as the value quoted in the
abstract (7.3x 10739 kg-s* if we put more precise numbers

and factors in). So indeed:
€ <1072 t0 1073 (in ST units) , (33)

to satisfy Equivalence Principle tests.

Another source of bounds is Big Bang Nucleosyn-
thesis (BBN). At time ¢ ~ 10 s after the Big Bang,
the universe had a high temperature but nuclear reac-
tions were sensitive to the neutron-proton mass differ-
ence and binding energies. If £ was significant then
(curvature was around 107% s=* according to Table I for
that epoch), it could have altered nuclear reaction rates
and element abundances. The success of the standard
BBN in predicting helium and deuterium yields implies
any such variation in nuclear parameters was small (per-
haps < 104 relative). That translates to something like
¢Kppn/my < 1072

£ <107 x my /1078 ~ 107 x 1.67 x 10727/1076 ~

With Kgen ~ 1076 574, we get

1.67 x 10725, This is a weaker bound than the EP test

by many orders, so EP dominates.
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Thus, ¢ must be extremely small. But nature gives us
a loophole: K in a neutron star interior can be as high
as 10?2 s=* or more (see Table I). Even with & ~ 10729,
the product ¢K could be ~ 1077, which is small but
not ridiculously so. For instance, that would imply a
0.00001% change in nucleon mass in those conditions.
Not dramatic for one nucleon, but for nuclear binding it
could shift things by, say, 0.001 MeV on a 8 MeV separa-
tion energy, which might be noticeable. If K is higher or
& at the upper end of allowed, maybe £ could approach
107° or 10* in extreme cases, causing a 0.01% level ef-
fect. This might be just enough to have some impact
on heavy element formation or equation of state (since
neutron star matter is finely balanced between forces).

In short, the theory finds a niche where it is practi-
cally invisible in everyday conditions but could subtly
influence the most extreme cosmic environments. This
separation of scales (the viability gulf) is what keeps it
from being ruled out outright and gives it a chance to be

relevant in astrophysics.

VI. PHENOMENOLOGY AND
EXPERIMENTAL CONSTRAINTS

A. The Viability Gulf in Curvature Scales

One of the most salient features of the 6DT framework
is how it can hide from detection in weak gravity envi-
ronments yet have strong effects in extreme gravity. We
summarize this with what we call the Viability Gulf,
illustrated in Table I. This gulf is essentially the many
orders-of-magnitude difference in the curvature scalar IC
between Earth-bound experiments and neutron star or
black hole regimes.

In Table I, we take Earth’s surface curvature as a base-

line (~ 10~!2 s74, which is roughly in the right ballpark



TABLE 1. The Viability Gulf in Tidal Curvature K
K (s7%) Relative to Earth
~ 10712 1 (by definition)

Environment

Earth Surface (lab)

Sun Surface ~ 10713 ~ 0.1
Early Universe (t ~ 10s) ~ 1076 ~ 108
Neutron Star Interior ~ 10?2 ~ 1034
Black Hole (horizon scale) ~ 10%° ~ 1042

for the Earth’s tidal gravity if we consider how much a
1-meter object experiences gradient in g). The Sun’s sur-
face is actually slightly lower because even though the
Sun is more massive, it’s much larger radius, so tidal
gravity at its surface is weaker than Earth’s surface (the
Sun’s Kg = 0.1 of Earth’s, as shown). The early universe
(Big Bang Nucleosynthesis era) had higher curvature, on
the order of 10° times Earth’s. But neutron star interiors
are fantastically higher, easily 1034 times Earth or more,
depending on the star’s compactness. And near a black
hole event horizon, it could be yet higher.

This means that even if a coupling £ is tiny, the product
&K can be huge in those extreme places. The viability
gulf allows 6DT to satisfy all human experiments (which
typically probe down to £ < 10~ or so with Earth’s KC,
forcing £ extremely small), while still permitting £K to
be appreciable (> 10710 or even 107°) in neutron stars or
BHs. The gulf is essentially about 34 orders of magnitude
(Earth to NS). This is the dynamical range in which 6DT

can “hide” and then “reveal” itself.

B. Existing Constraints on the 6DT Parameters

We have already discussed the main constraints quali-

tatively. Here we compile them more quantitatively:

e Equivalence Principle (Universality of Free
Fall): Tests with torsion balances and lunar laser
ranging have set the E6tvos parameter n < 1071

for differential acceleration of different materials
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in Earth’s gravity. If material A has a fraction
fa of its mass coming from £ (via nuclear bind-
ing changes) and B has fg, then n ~ |fa — fB|.
Typical differences in composition (say Be vs Ti
in the Be-Ti experiment) might yield f differences
on the order of (g times some sensitivity factor
( 0.001 perhaps because binding energy differences
between light and heavy elements per nucleon are
a few MeV out of 931 MeV). To be safe, we require
Kg < 1071, giving:

2
14MNC

CZK:@

£<10™ ~Tx1073%kg-s*,

as earlier. This is the most stringent constraint.

Precision Mass and Frequency Measure-
ments: Changing nucleon mass or atomic con-
stants in different gravitational potentials (like ex-
periments comparing atomic clocks at different
heights or comparing atomic vs nuclear clocks)
could detect a nonzero £. So far, atomic clock
comparisons at different gravitational potentials
(like on Earth’s surface vs in a tower) have con-
firmed standard gravitational redshift to high pre-
cision, without anomalies that would come from
mass changes. These typically bound any position-
dependent variation of fundamental constants to
less than 1076 for Earth potential differences
(which translate to K differences of 107!2? vs near
zero). This is a weaker bound than EP for us, but

consistent.

Cosmology and BBN: If ¢ were larger than
10729, BBN might have been noticeably altered.
Observations of primordial helium and deuterium
match theory to 1% or better. That limits £
in BBN (with Kggny ~ 107%) to < 0.01, hence



¢ < 10728, in line with the EP bound order of mag-

nitude.

e Neutron Star Equations of State: If (K is
appreciable in neutron stars, it might affect the
stiffness of the equation of state (EoS). A prelim-
inary consequence is that nucleon effective mass
in the core might shift slightly, altering pressure
for a given density. Observations of NS masses
and radii could, in principle, constrain such effects.
Currently, uncertainties in EoS are large, so this
doesn’t give a clear number, but it implies £K prob-
ably can’t be too large or else NS observables (like
maximum mass) might deviate. However, given ¢ is

so small, ¢C in NS might still be only 0.0001, which

is probably within nuclear theory uncertainties.

In summary, all current precision measurements force
€ (the coupling in metric) and £ (the mass coupling) to
be extremely small. We have used some e limits from
Lorentz violation tests (not detailed here but referenced
in [3]) and £ limits from EP. Both are on the order of
10727 or so in dimensionless or SI units combination.
This double requirement means any 6DT effect is ex-
tremely subtle in normal conditions. Yet, the gulf to
astrophysical conditions allows those tiny couplings to

have interesting effects where I is huge.

C. Proposed Optical Clock Experiment for 6DT

Signatures

While direct tests of mass variation in strong gravity
are not currently feasible in labs, we can target the kine-
matic signature of the vector-time framework using high
precision instruments. One suggestion we propose is an
optical atomic clock experiment that looks for tiny mod-

ulations in the measured speed of light due to the Earth’s
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motion in the tidal field of the Sun (and galaxy).

In standard physics, the one-way speed of light is
isotropic and constant (¢) in any inertial frame, and even
in non-inertial (rotating) frames, Maxwell’s equations in
vacuum yield no anisotropic variations except those ac-
counted by standard Doppler shifts. However, in the 6DT
metric, the presence of K;; introduces a subtle anisotropy
in the effective index of refraction of space. To illustrate,
consider a light ray propagating in direction 7 (a unit
3-vector in space). The condition for a null ray in the 6D
metric (neglecting €? small terms) is:

dz" da” cdxt dtt 2 dtt dtd
Guv i ‘ax 26K i gy Gy — €704 Gy ax

Solving this for da’/dx? (the spatial light velocity com-
ponents relative to time) is complicated by the dt* terms,
but one can gauge that if the internal coordinates adjust
adiabatically to minimize travel time, there will be an
induced directional dependence. In fact, to first order in
€, one finds an effective metric for light propagation in

4D:
ds2g ~ —c2dt? + (1 — eK;ja'nd )de?

where d¢ is the spatial line element along direction 7.
This means the photon sees a slightly different speed
if traveling parallel or perpendicular to tidal stretches.
More concretely, one can derive:

d(n) = % ~c {1 — ;eﬁ%]«ﬁj] : (34)
to linear order in e. This indicates an anisotropy: along
directions where 7 aligns with the principal axes of the
tidal tensor, c is slightly reduced or increased. For Earth
in the Sun’s tidal field, n*K;;n? will be on the order of
K, if pointing radial or some combination if not. At

Earth, the Sun’s tidal K., ~ 10715 s72 (since Sun’s grav-



ity at Earth gives tidal GMy/r® 6 x 10710/AU?

Actually, we can estimate: at Earth distance, Sun’s
tidal field is about 1076 of Earth’s own gravity gradient,
roughly 107!® maybe, small). Earth’s own field in lab
is bigger (the 10712 we set), but lab moves with Earth,
co-moving with that field, so perhaps Sun or galaxy tide

is more relevant for a stationary reference.

Now, a standard Michelson-Morley experiment would
look for a constant anisotropy o< eK;;. But that would
be static in Earth frame (if due to Earth’s own K which
rotates with Earth, or Sun’s K which for an Earth-fixed
lab rotates as Earth rotates daily). Classical Michelson-
Morley null results already bound any anisotropy of ¢ at
the 10718 level relative (~ 10715 absolute). This implies
eK at Earth must be below 107!° or so, consistent with
our € being tiny.

However, 6DT predicts something more distinctive:
because K;; is in a fixed frame (say inertial frame of Sun
or galaxy) and Earth rotates and orbits, the anisotropy
will not be constant in Earth coordinates. It will have
time dependence as the orientation of, say, Earth’s veloc-
ity or apparatus relative to K;; changes. In particular,
there should be sidebands at the sum and difference of
the Earth’s rotation frequency wg and orbital frequency
Qg. Typical Lorentz-violation frameworks (like the SME
[3]) predict daily modulations (sidereal day) and annual
modulations separately, but a vector time coupling sug-
gests a mixing: you might see a beat frequency Qg +wg
if the effect couples to both boost (Earth’s orbital veloc-
ity B ~ 107*) and rotation (which modulates direction
daily). Specifically, the term O(ef) in our expression in-
dicates that if the lab is moving at velocity 5 = ¥/c rela-
tive to the preferred frame where K;; is diagonal, then ¢’
gets an extra directional term proportional to ¢3. Earth’s

orbital motion provides S ~ 10~* with a yearly phase,
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and Earth’s sidereal rotation carries the lab in different
directions relative to some cosmic frame. The combina-
tion yields frequencies at wg =+ {2g (roughly one sidereal
day ~ 23h56min and one sidereal day + one year period
sidebands).

To detect this, one could set up two ultra-stable op-
tical clocks connected by a phase-stabilized fiber link,
oriented perhaps North-South or East-West. As Earth
rotates and orbits, the light travel time between them
might experience minuscule modulations. By comparing
the clock rates (like measuring the frequency difference
continuously), one could search for Fourier components
at the predicted sidebands. Because these sideband fre-
quencies (i.e. roughly a sidereal frequency of 1/day and
an annual of 1/year combined to give near 1/day but
slightly offset by 1/year) are quite specific, one can in-
tegrate over long times to dig into extremely tiny signal

levels.

The advantage is that many systematic effects (tem-
perature, magnetic, etc.) are daily but not at these weird
combo frequencies, so a detection of precisely wg + Qg
would be a smoking gun of some exotic physics like
6DT. The SME (Standard Model Extension) also pre-
dicts some sidebands if boost-dependent coefficients ex-
ist, but typically primary searches focus on sidereal vari-
ations. By looking for the small beat frequency pattern,
one can isolate this effect. According to our framework,
the magnitude of the sideband signal (fractional ¢ vari-
ation) might be eKgfBg ~ € x 10712 x 107% = 10~ 16e.
If € were, say, 1071 (just hypothetically within some al-
lowed range), that is 10731, hopeless. But maybe € could
be up to 1077 if other constraints allow (some Lorentz
violation constraints allow 10~7 in certain coefficients).
Then 10716 x 10~7 = 10723, still beyond current reach.

However, optical clocks are improving rapidly; 1078 pre-



cision is routine, 1072° may be reachable with long av-
eraging, and 1072% might be out of reach but one can
dream.

In summary, the optical clock two-station experiment
aims to detect the unique 6DT signature: a boost and
orientation dependent variation of light speed. If found,
it would not only confirm Lorentz violation but specifi-
cally point to an internal time structure because of the
pattern of sidebands (which is “orthogonal” to typical

static anisotropy signals in SME language).

VII. DISCUSSION AND OUTLOOK

The 6DT framework, as presented, straddles an inter-
esting intersection of ideas in theoretical physics. It is
helpful to compare and contrast it with other approaches
to unifying fundamental physics and consider conceptual

implications:

A. Relation to Two-Time Physics and Hidden

Symmetries

Two-Time (2T) Physics, developed by Bars and collab-
orators [1], introduced a second time dimension in order
to reveal hidden SO(2,d) symmetries in 4D dynamics
(with d the number of spatial dims). That theory re-
quired a gauge symmetry (Sp(2,R)) to remove negative
norm states. Similarly, 6DT requires an SO(3) gauge
symmetry in the time sector. However, a key difference
is that 2T physics often treated the extra time as a global
second time coordinate, whereas in 6DT the extra time is
an internal vector space attached at each spacetime point
(like an internal symmetry space). This is more analo-
gous to how extra spatial dimensions appear in Kaluza-

Klein (as an internal fiber at each point of spacetime)

but here that fiber is time-like. The SO(3); gauge sym-

19

metry in 6DT ensures only one effective time flows along
any trajectory, much as Sp(2,R) ensured a single time in
2T physics. One might wonder: could 6DT be hiding
some symmetry or conservation law? Possibly—one hint
is that the absence of ghosts implies a conserved charge
(the BRST charge) and perhaps a Gribov-type copy of
time. It’s conceivable that 6DT casts known physics in a
higher symmetry framework; indeed, if we compactify or

gauge-fix ¢ appropriately, one might recover the hidden

symmetries that Bars found but now geometrically.

B. Contrast with Kaluza-Klein and Extra Spatial

Dimensions

Kaluza-Klein theory from 1921 [2] introduced an extra
spatial dimension to unify gravity and electromagnetism.
The off-diagonal metric components g,,5 were interpreted
by Klein as electromagnetic potentials A,. In 6DT, we
similarly get off-diagonal components G; which resem-
ble three U(1) gauge fields or one SO(3) gauge field (if
we think of them as a triplet). But unlike Kaluza-Klein,
these fields are not independent degrees of freedom with
their own equations (like Maxwell eqns). Instead, they
are fixed by the gravitational potential’s Hessian, effec-
tively meaning the gauge fields are slaved to gravity. This
is a novel twist: gravity doesn’t just unify with a gauge
field, it absorbs it—tidal gravity plays dual role as source
of an SO(3) gauge-like force on test particles. The ad-
vantage is we don’t get unwanted long-range forces: in
Kaluza, A, could propagate and give extra force (electro-
magnetism). Here W,; = €K ,; doesn’t propagate beyond
the matter source that created ®. It’s more like a fixed
background field determined by matter distribution. In a
way, 6DT trades the idea of unifying different forces for

unifying concepts: mass generation (usually attributed



to Higgs/spontaneous symmetry breaking) is linked to

gravity (curvature) rather than adding a new force.

C. Mass Generation and Higgs Mechanism

A natural question: Does GIMV replace the Higgs
mechanism? The answer is no—the Higgs field still ac-
counts for the rest mass of fundamental particles like elec-
trons and quarks in the Standard Model. GIMV, how-
ever, addresses the effective mass of bound systems and
composite particles in gravitational fields. It’s comple-
mentary. In principle, one could extend GIMV coupling
£K4n) to electrons or quarks. But if one did so, atomic
energy levels would also shift in strong gravity (imag-
ine hydrogen’s energy changing because electron mass
changed), which would give another route to detection.
So far, we considered nucleons because nuclear binding
energies are large and already environment-dependent
(e.g., in neutron stars nuclear matter is different). In the
SM, the majority of a nucleon’s mass is actually QCD
binding energy, not just Higgs (the quarks contribute
few MeV out of 938 MeV). So one could philosophically
say: The bulk of mass in the universe (like mass of pro-
tons/neutrons) comes from QCD dynamics, not Higgs,
and here we propose adding a gravitational curvature ef-
fect to that. If one is a Machian, one could imagine that
inertia (mass) of an object arises from interaction with
the rest of the universe’s mass through gravity. 6DT
makes a concrete Machian proposal: X coupling is a
local manifestation of how surrounding matter’s gravity

(through curvature) contributes to a particle’s inertia.
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D. Lorentz Invariance and the SME

The 6DT model inherently violates 4D Lorentz invari-
ance because the extra structure (especially K;; being
tied to a particular frame like the gravitational poten-
tial’s Hessian) picks out preferred frames (for example,
near Earth, the frame where Kj;; is diagonal might be
the Earth-centered frame). However, this violation is
suppressed by € and by the smallness of K;; in our re-
gion. In the formalism of the Standard Model Extension
(SME) [3], one could map the K;; field to certain co-
efficients of Lorentz violation in the gravity or photon
sector (like ¢, parameters). The novelty is that these
coeflicients are not constants but have a spatial depen-
dence given by gravitational potential. This is a very spe-
cific form of Lorentz violation: it is gravity-induced and
hence correlates with the presence of mass. It suggests
searching for Lorentz violation signals that vary with the
gravitational environment (like at different altitudes or
locations). For instance, an SME coefficient might effec-
tively be ¢, (z) x 0,0, ®(z). This would be a new class

of “extended” SME models.

So far, experiments haven’t found any Lorentz viola-
tion, but they mostly assume constant coefficients. Ours
vary in a known way. Could there be a tiny effect that
was missed because of assumptions? Possibly. This is
why experiments like the clock one proposed could push

the envelope.

VIII. QUANTUM GRAVITY PERSPECTIVE

Quantizing the six-dimensional gravitational field in
the 6DT framework presents both challenges and novel
opportunities. Pure Einstein gravity in six dimensions

is known to be perturbatively non-renormalizable: loop



corrections generate divergences that cannot be absorbed
into a finite set of counterterms. In particular, while
four-dimensional gravity is finite at one loop and di-
verges at two loops, six-dimensional gravity generates
non-removable divergences already at one loop. Thus,

the Einstein-Hilbert action alone is insufficient for defin-

ing a UV-complete quantum theory in six dimensions.

A. Higher-Curvature Completion and Effective
Field Theory

A natural resolution is to treat 6DT gravity as an ef-
fective field theory valid below a cutoff scale Ag, supple-
mented by higher-curvature operators:

Sep = ﬁ [d°XV-GR

+ a [dSXV/—G (R* —4RApR*P + RapcpRAPCP) +
O(R?).
The curvature-squared term in the above equation is the
six-dimensional Gauss—Bonnet invariant. Unlike in four
dimensions, this term contributes dynamically and sup-
presses power-counting divergences while avoiding mas-
sive ghost poles in the propagator. Including such Love-
lock terms renders the theory power-counting renormal-
izable at one loop and stabilizes graviton propagation.

Further extensions may include non-vanishing torsion
in an Einstein—Cartan formulation, in which spin-density
sources regularize fermionic singularities and reduce ul-
traviolet divergences. We do not assume torsion in the
present work but note its theoretical compatibility with

the 6DT framework.

B. Internal Time Dimensions as Gauge Fiber and

Ghost Removal

A distinctive feature of 6DT is that the three internal

time-like coordinates ¢* form a compact fiber endowed
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with a local SO(3); gauge symmetry:

tt — Rij(a:) 7, R(z) € SO(3);. (35)
This symmetry constrains physical states to be invariant
under rotations of the internal time triad. The corre-

sponding first-class constraints
Jij = tiPtj - tthi ~ 0 (36)

generate gauge transformations and eliminate negative-
norm ghost modes typically associated with multiple time
directions. In BRST quantization, we introduce ghost
fields ¢/, antighosts b;;, and write the BRST operator

7, mn 4j .kl
Q:CjJi'_ffij,kl ce bmn7

2 _
; Q> =0, (37

ensuring that the physical Hilbert space is given by the
cohomology Ker Q/Im Q. This structure parallels two-
time physics models of Bars, but with a rank-3 time sec-

tor rather than a single additional temporal dimension.

C. Perturbative Quantization and Graviton Modes
Expanding around a flat 6D background,

Gap =naB + has, (38)

the quadratic action yields a graviton propagator with

additional tensor components:
hAB — {h,u,lu huia hij}u (39)

corresponding to 4D spin-2 gravitons, mixed

graviphoton-like modes, and internal spin-0/spin-2

excitations, respectively. Gauge fixing SO(3); eliminates



excitations purely internal to the time fiber:

hij =0 (gauge-fixed). (40)
The graviton propagator in momentum space takes the

schematic form:

(phys)
DABCD(k)—M (41)

k2 4de’
where Hg’;ycsg projects onto polarizations orthogonal to
both spacetime diffeomorphisms and internal SO(3); ro-

tations.

D. Dimensional Reduction and Emergence of 4D

Mass

Integrating out internal time coordinates under the as-

sumption of compact gauge orbits:

/d?’t et~ Z exp (in0'), (42)

n€ez3

produces a Kaluza—Klein tower of effective rest masses:

Mt
2 2 n;n

Meg = My + Riga (43)

suggesting the interpretation that 4D inertial mass
arises from quantized momentum in internal time-space.
The SO(3); symmetry enforces degeneracy among these
modes, linking mass generation with gauge invariance in

the time sector.

E. Renormalization and UV Behavior

Loop corrections in the reduced 4D theory generate

curvature-squared counterterms:
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ASyp = /d4l‘\/ —g (61R2 + CQRW,RIW + C3RMVPUR‘LWPU) R

(44)
with beta functions schematically:
dC,‘ _
u@ = Bi(e, Ry Y, k). (45)

Depending on whether the compactification radius Ry
flows toward or away from zero, the theory may exhibit:
- Asymptotic safety (a finite UV fixed point),
- Dimensional decompactification, or
- Strong coupling in the internal sector.
A full renormalization group analysis is left to future

work.

F. Geometry as Origin of Inertia

If rest mass originates from internal geometric momen-
tum as in Eq. (43), then gravitational and inertial mass
share a common geometric origin, naturally enforcing the
Strong Equivalence Principle. The universal coupling
of gravity to energy arises because all stress-energy in
4D corresponds to geometric motion or curvature in 6D.

Thus, graviton coupling is not an added postulate but a

consequence of the bulk geometry.

G. Future Theoretical Work

There are many open questions and avenues: - The
full nonlinear regime of 6DT field equations: e.g., what
is a black hole solution? Does it have an internal time
hair (some internal rotation or something)? Could there
be new phenomena like multiple event horizons due to
multiple times? Probably gauge constraints avoid that,

but worth investigating. - Cosmology in 6DT: If early



universe had K not negligible, does it change how infla-
tion or expansion work? Possibly not at first order, since
early universe was very homogeneous (tidal X nearly zero
in a uniform radiation or matter dominated cosmos, iron-
ically 6DT effects might be small in FRW cosmology un-
til structures form). - The connection between K;; and
known invariants: In GR, Kj; relates to the electric part
of the Weyl tensor (in vacuum) or to the Ricci spatial
projections (in matter). A deeper geometric understand-
ing might be: 6DT is like taking the electric part of cur-
vature and promoting it to metric status in extra dims.
Maybe a magnetic part version could exist too (some vec-
tor space for magnetic part of Riemann?). That could
unify gravitational waves or frame-dragging with some-
thing. - Stability and causality: Ensuring no causality
violation with 3 times is crucial. Our gauge constraint
ensures no propagating degrees of freedom along extra
times, so presumably no closed timelike curves because
any would be gauge artifacts. But one should verify sce-
narios like rotating a vector time, could that create an
effective closed loop in time? The hope is SO(3); gauge
prevents any physical observable loop. It’s a complex but

interesting check.

H. Experimental Outlook

The optical clock experiment we mentioned is one near-
term idea. Another possible test: in a highly controlled
lab, create an artificial tidal field (maybe with two mas-
sive spheres causing a tidal gradient) and see if atomic
transitions shift when you move an atom between re-
gions of different tidal Kj;. This is extremely hard be-
cause Earth’s own Kj; is already bigger than what any
lab masses can do, and you’d only get a tiny difference

moving a meter. Perhaps one day space experiments
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could measure if time dilation has subtle deviations in
orbits with varying tidal forces. Also, the “geometrically
induced fission” could be tested in principle: imagine
dropping a lump of heavy isotope into a strong field (like
into a neutron star, not feasible!). But maybe binary pul-
sar timing or supernova signals could hint if heavy nuclei
break differently under strong gravity.

One particularly appealing target is neutron star merg-
ers (kilonova